Mackey-Glass equation driven by fractional Brownian motion

被引:16
作者
Dung Tien Nguyen [1 ]
机构
[1] FPT Univ, Dept Math, Hanoi, Vietnam
关键词
Mackey-Glass equation; Fractional Brownian motion; Malliavin calculus; LONG-RANGE DEPENDENCE; PARAMETER; BEHAVIOR; RESPECT;
D O I
10.1016/j.physa.2012.06.013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we introduce a fractional stochastic version of the Mackey-Glass model which is a potential candidate to model objects in biology and finance. By a semi-martingale approximate approach we find an semi-analytical expression for the solution. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:5465 / 5472
页数:8
相关论文
共 22 条
[11]   Multiscale analysis of economic time series by scale-dependent Lyapunov exponent [J].
Gao, Jianbo ;
Hu, Jing ;
Tung, Wen-Wen ;
Zheng, Yi .
QUANTITATIVE FINANCE, 2013, 13 (02) :265-274
[12]  
Hu YZ, 2004, ANN PROBAB, V32, P265
[13]   Optimal consumption and portfolio in a Black-Scholes market driven by fractional Brownian motion [J].
Hu, YZ ;
Oksendal, B ;
Sulem, A .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2003, 6 (04) :519-536
[14]   Is it Possible to Study Chaotic and ARCH Behaviour Jointly? Application of a Noisy Mackey-Glass Equation with Heteroskedastic Errors to the Paris Stock Exchange Returns Series [J].
Catherine Kyrtsou ;
Michel Terraza .
Computational Economics, 2003, 21 (3) :257-276
[15]   Seasonal Mackey-Glass-GARCH process and short-term dynamics [J].
Kyrtsou, Catherine ;
Terraza, Michel .
EMPIRICAL ECONOMICS, 2010, 38 (02) :325-345
[16]  
Losa GA., 2005, MATH BIOSCIENCES INT
[17]   OSCILLATION AND CHAOS IN PHYSIOLOGICAL CONTROL-SYSTEMS [J].
MACKEY, MC ;
GLASS, L .
SCIENCE, 1977, 197 (4300) :287-288
[18]   FRACTIONAL BROWNIAN MOTIONS FRACTIONAL NOISES AND APPLICATIONS [J].
MANDELBROT, BB ;
VANNESS, JW .
SIAM REVIEW, 1968, 10 (04) :422-+
[19]  
Nualart David, 2006, The Malliavin Calculus and Related Topics, V1995
[20]  
Peter E.E., 1994, FRACTAL MARKET ANAL