Mackey-Glass equation driven by fractional Brownian motion

被引:16
作者
Dung Tien Nguyen [1 ]
机构
[1] FPT Univ, Dept Math, Hanoi, Vietnam
关键词
Mackey-Glass equation; Fractional Brownian motion; Malliavin calculus; LONG-RANGE DEPENDENCE; PARAMETER; BEHAVIOR; RESPECT;
D O I
10.1016/j.physa.2012.06.013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we introduce a fractional stochastic version of the Mackey-Glass model which is a potential candidate to model objects in biology and finance. By a semi-martingale approximate approach we find an semi-analytical expression for the solution. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:5465 / 5472
页数:8
相关论文
共 22 条
[1]  
Bassingth waighte J., 1994, METHODS PHYSL, V2
[2]   Testing for a change of the long-memory parameter [J].
Beran, J ;
Terrin, N .
BIOMETRIKA, 1996, 83 (03) :627-638
[3]  
Buldygin V. V., 2000, METRIC CHARACTERIZAT, V188
[4]   Testing for long range dependence in banking equity indices [J].
Cajueiro, DO ;
Tabak, BM .
CHAOS SOLITONS & FRACTALS, 2005, 26 (05) :1423-1428
[5]   The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion [J].
Caraballo, T. ;
Garrido-Atienza, M. J. ;
Taniguchi, T. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (11) :3671-3684
[6]   Stochastic integration with respect to fractional Brownian motion [J].
Carmona, P ;
Coutin, L ;
Montseny, G .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2003, 39 (01) :27-68
[7]  
Coutin L, 2007, LECT NOTES MATH, V1899, P3
[8]  
CUTLAND N, 1993, P MONT VERT C ASC SW
[9]  
DUNG NT, 2008, VIETNAM J MATH, V36, P271
[10]  
Ferrante M, 2006, BERNOULLI, V12, P85