THE BEST RANK-1 APPROXIMATION OF A SYMMETRIC TENSOR AND RELATED SPHERICAL OPTIMIZATION PROBLEMS

被引:71
作者
Zhang, Xinzhen [1 ]
Ling, Chen [2 ]
Qi, Liqun [3 ]
机构
[1] Tianjin Univ, Sch Sci, Dept Math, Tianjin 300072, Peoples R China
[2] Hangzhou Dianzi Univ, Sch Sci, Hangzhou 310018, Zhejiang, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
symmetric tensor; the best rank-1 approximation; the best symmetric rank-1 approximation; power algorithm; POLYNOMIAL OPTIMIZATION; ORDER; SQUARES;
D O I
10.1137/110835335
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that for a symmetric tensor, its best symmetric rank-1 approximation is its best rank-1 approximation. Based on this result, a positive lower bound for the best rank-1 approximation ratio of a symmetric tensor is given. Furthermore, a higher order polynomial spherical optimization problem can be reformulated as a multilinear spherical optimization problem. Then, we present a modified power algorithm for solving the homogeneous polynomial spherical optimization problem. Numerical results are presented, illustrating the effectiveness of the proposed algorithm.
引用
收藏
页码:806 / 821
页数:16
相关论文
共 36 条
[1]   Blind channel identification and extraction of more sources than sensors [J].
Comon, P .
ADVANCED SIGNAL PROCESSING ALGORITHMS, ARCHITECTURES, AND IMPLEMENTATIONS VIII, 1998, 3461 :2-13
[2]   SYMMETRIC TENSORS AND SYMMETRIC TENSOR RANK [J].
Comon, Pierre ;
Golub, Gene ;
Lim, Lek-Heng ;
Mourrain, Bernard .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (03) :1254-1279
[3]   First-order perturbation analysis of the best rank-(R1, R2, R3) approximation in multilinear algebra [J].
De Lathauwer, L .
JOURNAL OF CHEMOMETRICS, 2004, 18 (01) :2-11
[4]   On the best rank-1 and rank-(R1,R2,...,RN) approximation of higher-order tensors [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1324-1342
[5]  
GHOSH A, 2008, COMP DIFF MRI WORKSH
[6]  
GRELLIER O., 2000, P EUR SIGN PROC C TA
[7]   Approximation algorithms for homogeneous polynomial optimization with quadratic constraints [J].
He, Simai ;
Li, Zhening ;
Zhang, Shuzhong .
MATHEMATICAL PROGRAMMING, 2010, 125 (02) :353-383
[8]   On the best rank-1 approximation of higher-order supersymmetric tensors [J].
Kofidis, E ;
Regalia, PA .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2002, 23 (03) :863-884
[9]   SHIFTED POWER METHOD FOR COMPUTING TENSOR EIGENPAIRS [J].
Kolda, Tamara G. ;
Mayo, Jackson R. .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2011, 32 (04) :1095-1124
[10]  
Lang S., 1993, Grad. Texts in Math., V142