Non-invasive in vivo quantification of human skin tension lines

被引:28
作者
Laiacona, D. [1 ]
Cohen, J. M. [1 ]
Coulon, K. [1 ]
Lipsky, Z. W. [1 ]
Maiorana, C. [1 ]
Boltyanskiy, R. [2 ,3 ,4 ]
Dufresne, E. R. [5 ]
German, G. K. [1 ]
机构
[1] SUNY Binghamton, Dept Biomed Engn, Binghamton, NY 13902 USA
[2] Yale Univ, Dept Phys, New Haven, CT 06520 USA
[3] Mem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY 10065 USA
[4] Mem Sloan Kettering Canc Ctr, Mol Pharmacol Program, New York, NY 10065 USA
[5] Swiss Fed Inst Technol Zurich, Dept Mat, CH-8093 Zurich, Switzerland
关键词
Skin; Anisotropy; Skin tension lines; In vivo; Non-invasive; HYPERTROPHIC SCAR FORMATION; BIOMECHANICAL PROPERTIES; MECHANICAL-PROPERTIES; STRATUM-CORNEUM; BEHAVIOR; MODEL; ANISOTROPY; DERMIS;
D O I
10.1016/j.actbio.2019.02.003
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Human skin is a composite tissue that exhibits anisotropic mechanical properties. This anisotropy arises primarily from the alignment of collagen and elastin fibers in the dermis, which causes the skin to exhibit greater tension in one direction, making it appear stiffer. A diverse number of skin tension guidelines have been developed to assist surgeons in making incisions that produce the least conspicuous scars. However, skin anisotropy is believed to vary from subject to subject, and no single guideline is universally recognized as the best to implement for surgical applications. To date, no system exists that can rapidly and non-invasively measure lines of skin tension in vivo. In this article, we evaluate the ability of a new aspiration system to measure the anisotropy of human skin. The device painlessly applies a radial stress of 17 kPa to a region of skin, and captures radially asymmetric skin deformations via a dermal camera. These deformations are used to quantify orientations of strain extrema and the direction of greatest skin stiffness. The ratio of these asymmetric strains varies between 1 and -0.75. A simple 2D transverse isotropic model captures this behavior for multiple anatomical sites. Clinical trials reveal that skin tension line orientations are comparable with existing skin tension maps and generally agree across subjects, however orientations statistically differ between individuals. As such, existing guidelines appear to provide only approximate estimates of skin tension orientation. Statement of Significance Skin tension lines (STL) in human skin arise primarily from collagen fiber alignment in the dermis. These lines are used by surgeons to guide incisions that produce the least conspicuous scars. While numerous anatomical STL maps exist, no single guideline is universally recognized as the most reliable. Moreover, manual methods of quantifying STL are imprecise. For the first time, we have developed a device capable of rapidly and non-invasively measuring STL orientations in vivo, using a single test. Our results are used to establish a simple constitutive model of mechanical skin anisotropy. Clinical trials further reveal STL orientations are comparable with existing maps, but statistically differ between individuals. Existing guidelines therefore appear to provide only approximate estimates of STL orientation. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:141 / 148
页数:8
相关论文
共 56 条
[1]   Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis [J].
Aarabi, Shahram ;
Bhatt, Kirit A. ;
Shi, Yubin ;
Paterno, Josemaria ;
Chang, Edward I. ;
Loh, Shang A. ;
Holmes, Jeffrey W. ;
Longaker, Michael T. ;
Yee, Herman ;
Gurtner, Geoffrey C. .
FASEB JOURNAL, 2007, 21 (12) :3250-3261
[2]  
Agache P., 2004, Measuring the Skin: Non-Invasive Investigations, Physiology, Normal Constants, P429
[3]   ACCOUNTING FOR NATURAL TENSION IN MECHANICAL TESTING OF HUMAN-SKIN [J].
ALEXANDER, H ;
COOK, TH .
JOURNAL OF INVESTIGATIVE DERMATOLOGY, 1977, 69 (03) :310-314
[4]  
Annaidh A.N., 2012, CHACTERISING ANISOTR
[5]   Automated Estimation of Collagen Fibre Dispersion in the Dermis and its Contribution to the Anisotropic Behaviour of Skin [J].
Annaidh, Aisling Ni ;
Bruyere, Karine ;
Destrade, Michel ;
Gilchrist, Michael D. ;
Maurini, Corrado ;
Ottenio, Melanie ;
Saccomandi, Giuseppe .
ANNALS OF BIOMEDICAL ENGINEERING, 2012, 40 (08) :1666-1678
[6]   Characterization of the anisotropic mechanical properties of excised human skin [J].
Annaidh, Aisling Ni ;
Bruyere, Karine ;
Destrade, Michel ;
Gilchrist, Michael D. ;
Ottenio, Melanie .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2012, 5 (01) :139-148
[7]   A randomized, controlled trial to determine the efficacy of paper tape in preventing hypertrophic scar formation in surgical incisions that traverse Langer's skin tension lines [J].
Atkinson, JAM ;
McKenna, KT ;
Barnett, AG ;
McGrath, DJ ;
Rudd, M .
PLASTIC AND RECONSTRUCTIVE SURGERY, 2005, 116 (06) :1648-1656
[8]  
BJERRING P, 1985, ACTA DERM-VENEREOL, P83
[9]  
BORGES A F, 1962, Br J Plast Surg, V15, P242, DOI 10.1016/S0007-1226(62)80038-1
[10]   RELAXED SKIN TENSION LINES [J].
BORGES, AF .
DERMATOLOGIC CLINICS, 1989, 7 (01) :169-177