HIGHER GENUS AFFINE ALGEBRAS OF KRICHEVER-NOVIKOV TYPE

被引:30
作者
Schlichenmaier, Martin [1 ]
机构
[1] Univ Luxembourg, Math Lab, L-1511 Luxembourg, Luxembourg
关键词
Krichever-Novikov algebras; central extensions; almost-grading; conformal field theory; infinite-dimensional Lie algebras; affine algebras; differential operator algebras; local cocycles;
D O I
10.17323/1609-4514-2003-3-4-1395-1427
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For higher genus multi-point current algebras of Krichever-Novikov type associated to a finite-dimensional Lie algebra, local Lie algebra two-cocycles are studied. They yield as central extensions almost-graded higher genus affine Lie algebras. In case that the Lie algebra is reductive a complete classification is given. For a simple Lie algebra, like in the classical situation, there is up to equivalence and rescaling only one non-trivial almost-graded central extension. The classification is extended to the algebras of meromorphic differential operators of order less or equal one on the currents algebras.
引用
收藏
页码:1395 / 1427
页数:33
相关论文
共 50 条
[1]  
[Anonymous], GEN SYMMETRIES PHYS
[2]  
[Anonymous], 1978, Principles of algebraic geometry
[3]   MODULI SPACES OF CURVES AND REPRESENTATION-THEORY [J].
ARBARELLO, E ;
DECONCINI, C ;
KAC, VG ;
PROCESI, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 117 (01) :1-36
[4]   NEW DUAL QUARK MODELS [J].
BARDAKCI, K ;
HALPERN, MB .
PHYSICAL REVIEW D, 1971, 3 (10) :2493-&
[5]   Irreducible representations for toroidal Lie algebras [J].
Berman, S ;
Billig, Y .
JOURNAL OF ALGEBRA, 1999, 221 (01) :188-231
[6]  
Bourbaki Nicolas, 1989, ELEMENTS MATH
[7]   UNIVERSAL CENTRAL EXTENSIONS OF ELLIPTIC AFFINE LIE-ALGEBRAS [J].
BREMNER, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (12) :6685-6692
[8]   4-POINT AFFINE LIE-ALGEBRAS [J].
BREMNER, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (07) :1981-1989
[9]   CENTRAL EXTENSIONS OF CURRENT GROUPS IN 2 DIMENSIONS [J].
ETINGOF, PI ;
FRENKEL, IB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (03) :429-444
[10]  
Feigin B. L., 1990, P ICM KYOT 1990, P71