HOMOGENEOUS SPECTRUM OF QUASI-PERIODIC GEVREY SCHRODINGER OPERATORS WITH DIOPHANTINE FREQUENCY

被引:2
作者
Yang, Yan [1 ]
Tao, Kai [1 ]
机构
[1] Hohai Univ, Coll Sci, 1 Xikang Rd, Nanjing 210098, Jiangsu, Peoples R China
关键词
Homogeneous spectrum; Gevrey potential; Diophantine frequency; quasi-periodic Schr?dinger operator; large coupling number; DENSITY-OF-STATES; ANDERSON LOCALIZATION; HOLDER CONTINUITY; GAPS;
D O I
10.3934/dcds.2022166
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the quasi-periodic Schrodinger operator with the non-degenerate Gevrey potential for the Diophantine frequency. We prove that if the coupling constant of the potential is large enough, then the spectrum is homogeneous.
引用
收藏
页码:688 / 714
页数:27
相关论文
共 50 条
[41]   Ballistic Transport for the Schrodinger Operator with Limit-Periodic or Quasi-Periodic Potential in Dimension Two [J].
Karpeshina, Yulia ;
Lee, Young-Ran ;
Shterenberg, Roman ;
Stolz, Gunter .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 354 (01) :85-113
[42]   On the spectrum of multi-frequency quasiperiodic Schrodinger operators with large coupling [J].
Goldstein, Michael ;
Schlag, Wilhelm ;
Voda, Mircea .
INVENTIONES MATHEMATICAE, 2019, 217 (02) :603-701
[43]   Resonance tongues in the quasi-periodic Hill-Schrodinger equation with three frequencies [J].
Puig, Joaquim ;
Simo, Carles .
REGULAR & CHAOTIC DYNAMICS, 2011, 16 (1-2) :61-78
[44]   Joint Continuity of Lyapunov Exponent for Finitely Smooth Quasi-periodic Schrodinger Cocycles [J].
Liang, Jin Hao ;
Fu, Lin Lin .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (07) :1131-1142
[45]   Anderson localization for block Jacobi operators with quasi-periodic meromorphic potential [J].
Zhang, Xiaojian .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (16) :12816-12832
[46]   LARGE DEVIATION THEOREMS FOR DIRICHLET DETERMINANTS OF ANALYTIC QUASI-PERIODIC JACOBI OPERATORS WITH BRJUNO-RUSSMANN FREQUENCY [J].
Geng, Wenmeng ;
Tao, Kai .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (12) :5305-5335
[47]   Dynamical localization for finitely differentiable quasi-periodic long-range operators [J].
Shan, Yuan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 427 :803-826
[48]   ABSOLUTELY CONTINUOUS SPECTRUM FOR CMV MATRICES WITH SMALL QUASI-PERIODIC VERBLUNSKY COEFFICIENTS [J].
Li, Long ;
Damanik, David ;
Zhou, Qi .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (09) :6093-6125
[49]   QUASI-PERIODIC SOLUTIONS FOR ONE-DIMENSIONAL NONLINEAR LATTICE SCHRODINGER EQUATION WITH TANGENT POTENTIAL [J].
Geng, Jiansheng ;
Zhao, Zhiyan .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (06) :3651-3689
[50]   Point spectrum of the Floquet Hamiltonian for Klein-Gordon equation under quasi-periodic perturbations [J].
Fang, Daoyuan ;
Han, Zheng ;
Wang, Weimin .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (02)