HOMOGENEOUS SPECTRUM OF QUASI-PERIODIC GEVREY SCHRODINGER OPERATORS WITH DIOPHANTINE FREQUENCY

被引:2
作者
Yang, Yan [1 ]
Tao, Kai [1 ]
机构
[1] Hohai Univ, Coll Sci, 1 Xikang Rd, Nanjing 210098, Jiangsu, Peoples R China
关键词
Homogeneous spectrum; Gevrey potential; Diophantine frequency; quasi-periodic Schr?dinger operator; large coupling number; DENSITY-OF-STATES; ANDERSON LOCALIZATION; HOLDER CONTINUITY; GAPS;
D O I
10.3934/dcds.2022166
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the quasi-periodic Schrodinger operator with the non-degenerate Gevrey potential for the Diophantine frequency. We prove that if the coupling constant of the potential is large enough, then the spectrum is homogeneous.
引用
收藏
页码:688 / 714
页数:27
相关论文
共 23 条
[1]   The Ten Martini Problem [J].
Avila, Artur ;
Jitomirskaya, Svetlana .
ANNALS OF MATHEMATICS, 2009, 170 (01) :303-342
[2]   ALMOST PERIODICITY IN TIME OF SOLUTIONS OF THE KDV EQUATION [J].
Binder, Ilia ;
Damanik, David ;
Goldstein, Michael ;
Lukic, Milivoje .
DUKE MATHEMATICAL JOURNAL, 2018, 167 (14) :2633-2678
[3]   Anderson localization for Schrodinger operators on Z with potentials given by the skew-shift [J].
Bourgain, J ;
Goldstein, M ;
Schlag, W .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 220 (03) :583-621
[4]   On nonperturbative localization with quasi-periodic potential [J].
Bourgain, J ;
Goldstein, M .
ANNALS OF MATHEMATICS, 2000, 152 (03) :835-879
[5]  
Bourgain J., 2005, Annals of Mathematics Studies, Vvol 158
[6]   Polynomial decay of the gap length for Ck quasi-periodic Schrodinger operators and spectral application [J].
Cai, Ao ;
Wang, Xueyin .
JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 281 (03)
[7]   Homogeneity of the spectrum for quasi-periodic Schrodinger operators [J].
Damanik, David ;
Goldstein, Michael ;
Schlag, Wilhelm ;
Voda, Mircea .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2018, 20 (12) :3073-3111
[8]   The isospectral torus of quasi-periodic Schrodinger operators via periodic approximations [J].
Damanik, David ;
Goldstein, Michael ;
Lukic, Milivoje .
INVENTIONES MATHEMATICAE, 2017, 207 (02) :895-980
[9]   The spectrum of a Schrodinger operator with small quasi-periodic potential is homogeneous [J].
Damanik, David ;
Goldstein, Michael ;
Lukic, Milivoje .
JOURNAL OF SPECTRAL THEORY, 2016, 6 (02) :415-427
[10]   Discrete one-dimensional quasi-periodic Schrodinger operators with pure point spectrum [J].
Eliasson, LH .
ACTA MATHEMATICA, 1997, 179 (02) :153-196