Quantifying degrees of information in remote sensing imagery

被引:0
作者
Lin, Zongjian [1 ]
Deng, Bing [1 ]
机构
[1] Chinese Acad Surveying & Mapping, Beijing 100039, Peoples R China
来源
PROCEEDINGS OF THE 8TH INTERNATIONAL SYMPOSIUM ON SPATIAL ACCURACY ASSESSMENT IN NATURAL RESOURCES AND ENVIRONMENTAL SCIENCES, VOL I: SPATIAL UNCERTAINTY | 2008年
关键词
information quantity; uncertainty; entropy; remote sensing imagery; correlation;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
So far there's been no metrology on the measurement of information of remote sensing imagery. We introduce the conception "Information quantity" from information theory to solve this problem. In this paper, the method and formulation for calculating information content of remote sensing imagery are discussed. Furthermore, we calculate the information quantity of some imagery and analyze the factors that affect the calculation on information quantity.
引用
收藏
页码:201 / 205
页数:5
相关论文
共 50 条
[41]   Urban building extraction based on information fusion-oriented deep encoder-decoder network in remote sensing imagery [J].
Zhang, Cheng ;
Ma, Mingzhou ;
He, Dan .
MULTIAGENT AND GRID SYSTEMS, 2022, 18 (3-4) :279-294
[42]   Quantifying Heterogeneity in SAR Imagery With the Rnyi Entropy [J].
Alpala, Janeth ;
Nascimento, Abraao D. C. ;
Frery, Alejandro C. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
[43]   Remote Sensing Teacher: Cross-Domain Detection Transformer With Learnable Frequency-Enhanced Feature Alignment in Remote Sensing Imagery [J].
Han, Jianhong ;
Yang, Wenjie ;
Wang, Yupei ;
Chen, Liang ;
Luo, Zhaoyi .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 :1-14
[44]   Object detection in remote sensing imagery using a discriminatively trained mixture model [J].
Cheng, Gong ;
Han, Junwei ;
Guo, Lei ;
Qian, Xiaoliang ;
Zhou, Peicheng ;
Yao, Xiwen ;
Hu, Xintao .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2013, 85 :32-43
[45]   Orientation guided anchoring for geospatial object detection from remote sensing imagery [J].
Yu, Yongtao ;
Guan, Haiyan ;
Li, Dilong ;
Gu, Tiannan ;
Tang, E. ;
Li, Aixia .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 160 :67-82
[46]   MULTI-LABEL CLASSIFICATION OF REMOTE SENSING IMAGERY WITH DEEP NEURAL NETWORKS [J].
Alshehri, Aaliyah ;
Bazi, Yakub ;
Ammour, Nassim ;
Alajlan, Naif .
2020 MEDITERRANEAN AND MIDDLE-EAST GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (M2GARSS), 2020, :97-100
[47]   RS-TOD: Tiny object detection model in Remote Sensing Imagery [J].
Nautiyal, Rakhi ;
Deshmukh, Maroti .
REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2025, 38
[48]   Semantic Segmentation of Remote Sensing Imagery Based on Improved Squeeze and Excitaion Block [J].
Wu Shengwei ;
Fang Jiaoli ;
Zhu Daming .
LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (12)
[49]   FADA: Feature Aligned Domain Adaptive Object Detection in Remote Sensing Imagery [J].
Xu, Tao ;
Sun, Xian ;
Diao, Wenhui ;
Zhao, Liangjin ;
Fu, Kun ;
Wang, Hongqi .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[50]   Discriminative Context-Aware Network for Target Extraction in Remote Sensing Imagery [J].
Hu, Lei ;
Niu, Chuang ;
Ren, Shenghan ;
Dong, Minghao ;
Zheng, Changli ;
Zhang, Wei ;
Liang, Jimin .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 :700-715