Distribution of herbicide-resistant acetyl-coenzyme A carboxylase alleles in Lolium rigidum across grain cropping areas of South Australia

被引:47
作者
Malone, J. M. [1 ]
Boutsalis, P. [1 ]
Baker, J. [1 ]
Preston, C. [1 ]
机构
[1] Univ Adelaide, Sch Agr Food & Wine, Glen Osmond, SA 5064, Australia
关键词
annual ryegrass; ACCase; herbicide resistance; target site mutation; resistance evolution; spread; GRASS ALOPECURUS-MYOSUROIDES; A-CARBOXYLASE; DICLOFOP-METHYL; COA CARBOXYLASE; BLACK-GRASS; INHIBITING HERBICIDES; TRANSFERASE DOMAIN; PLANTS RESISTANT; POPULATION; METABOLISM;
D O I
10.1111/wre.12050
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Resistance to the acetyl-coenzyme A carboxylase (ACCase)-inhibiting herbicides in Lolium rigidum is widespread in grain cropping areas of South Australia. To better understand the occurrence and spread of resistance to these herbicides and how it has changed with time, the carboxyl transferase (CT) domain of the ACCase gene from resistant L.rigidum plants, collected from both random surveys of the mid-north of Southern Australia over 10years as well as stratified surveys in individual fields, was sequenced and target site mutations characterised. Amino acid substitutions occurring as a consequence of these target site mutations, at seven positions in the ACCase gene previously correlated with herbicide resistance, were identified in c. 80% of resistant individuals, indicating target site mutation is a common mechanism of resistance in L.rigidum to this herbicide mode of action. Individuals containing multiple amino acid substitutions (two, and in two cases, three substitutions) were also found. Substitutions at position 2041 occurred at the highest frequency in all years of the large area survey, while substitutions at position 2078 were most common in the single farm analysis. This study has shown that target site mutations leading to amino acid substitutions in ACCase of L.rigidum are widespread across South Australia and that these mutations have likely evolved independently in different locations. The results indicate that seed movement, both within and between fields, may contribute to the spread of resistance in a single field. However, over a large area, the independent appearance and selection of target site mutations conferring resistance through herbicide use is the most important factor.
引用
收藏
页码:78 / 86
页数:9
相关论文
共 36 条
[1]  
Baker J., 2008, Proceedings of the 16th Australian Weeds Conference, Cairns Convention Centre, North Queensland, Australia, 18-22 May, 2008, P110
[2]   Incidence of Herbicide Resistance in Rigid Ryegrass (Lolium rigidum) across Southeastern Australia [J].
Boutsalis, Peter ;
Gill, Gurjeet S. ;
Preston, Christopher .
WEED TECHNOLOGY, 2012, 26 (03) :391-398
[3]   RESISTANCE TO 9 HERBICIDE CLASSES IN A POPULATION OF RIGID RYEGRASS (LOLIUM-RIGIDUM) [J].
BURNET, MWM ;
HART, Q ;
HOLTUM, JAM ;
POWLES, SB .
WEED SCIENCE, 1994, 42 (03) :369-377
[4]   Long distance pollen-mediated flow of herbicide resistance genes in Lolium rigidum [J].
Busi, Roberto ;
Yu, Qin ;
Barrett-Lennard, Robert ;
Powles, Stephen .
THEORETICAL AND APPLIED GENETICS, 2008, 117 (08) :1281-1290
[5]   Resistance mechanism to acetyl coenzyme A carboxylase inhibiting herbicides in Phalaris paradoxa collected in Mexican wheat fields [J].
Cruz-Hipolito, Hugo ;
Dominguez-Valenzuela, Jose A. ;
Osuna, Maria D. ;
De Prado, Rafael .
PLANT AND SOIL, 2012, 355 (1-2) :121-130
[6]   Status of black grass (Alopecurus myosuroides) resistance to acetyl-coenzyme A carboxylase inhibitors in France [J].
Delye, C. ;
Menchari, Y. ;
Guillemin, J-P ;
Matejicek, A. ;
Michel, S. ;
Camilleri, C. ;
Chauvel, B. .
WEED RESEARCH, 2007, 47 (02) :95-105
[7]   Weed resistance to acetyl coenzyme A carboxylase inhibitors:: an update [J].
Délye, C .
WEED SCIENCE, 2005, 53 (05) :728-746
[8]   An isoleucine residue within the carboxyl-transferase domain of multidomain acetyl-coenzyme A carboxylase is a major determinant of sensitivity to aryloxyphenoxypropionate but not to cyclohexanedione inhibitors [J].
Délye, C ;
Zhang, XQ ;
Chalopin, C ;
Michel, S ;
Powles, SB .
PLANT PHYSIOLOGY, 2003, 132 (03) :1716-1723
[9]   High gene flow promotes the genetic homogeneity of arable weed populations at the landscape level [J].
Delye, Chnstophe ;
Clement, Julie A. J. ;
Pernin, Fanny ;
Chauvel, Bruno ;
Le Corre, Valerie .
BASIC AND APPLIED ECOLOGY, 2010, 11 (06) :504-512
[10]   Geographical variation in resistance to acetyl-coenzyme A carboxylase-inhibiting herbicides across the range of the arable weed Alopecurus myosuroides (black-grass) [J].
Delye, Christophe ;
Michel, Severine ;
Berard, Aurelie ;
Chauvel, Bruno ;
Brunel, Dominique ;
Guillemin, Jean-Philippe ;
Dessaint, Fabrice ;
Le Corre, Valerie .
NEW PHYTOLOGIST, 2010, 186 (04) :1005-1017