The Zografos-Balakrishnan odd log-logistic family of distributions: Properties and Applications

被引:1
作者
Cordeiro, Gauss M. [1 ]
Alizadeh, Morad [2 ]
Ortega, Edwin M. M. [3 ]
Valdivieso Serrano, Luis H. [4 ]
机构
[1] Univ Fed Pernambuco, Dept Estat, BR-50740540 Recife, PE, Brazil
[2] Persian Gulf Univ, Dept Stat, Fac Sci, Bushehr 75169, Iran
[3] Univ Sao Paulo, Dept Ciencias Exatas, BR-13418900 Piracicaba, SP, Brazil
[4] Pontificia Univ Catolica Peru, Dept Ciencias, Lima 32, Peru
来源
Hacettepe Journal of Mathematics and Statistics | 2016年 / 45卷 / 06期
关键词
Estimation; Gamma distribution; Generated family; Maximum likelihood; Mean deviation; Moment; Quantile function; WEIBULL DISTRIBUTION; FAILURE RATE; DISCRETE;
D O I
10.15672/HJMS.20159714145
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study some mathematical properties of a new generator of continuous distributions with two additional shape parameters called the Zografos-Balakrishitaii odd log-logistic family. We present some special models and investigate the asymptotes and shapes. The density function of the new family can be expressed as a mixture of exponentiated densities based on the same baseline distribution. We derive a power series for its quantile function. Explicit expressions for the ordinary and incomplete moments, quantile and generating functions, Shannon and Renyi entropies and order statistics, which hold for any baseline model, are determined. We estimate the model parameters by maximum likelihood. Two real data sets are used to illustrate the potentiality of the proposed family.
引用
收藏
页码:1767 / 1803
页数:37
相关论文
共 19 条
[1]   HOW TO IDENTIFY A BATHTUB HAZARD RATE [J].
AARSET, MV .
IEEE TRANSACTIONS ON RELIABILITY, 1987, 36 (01) :106-108
[2]   A lifetime distribution with decreasing failure rate [J].
Adamidis, K ;
Loukas, S .
STATISTICS & PROBABILITY LETTERS, 1998, 39 (01) :35-42
[3]   A New Discrete Modified Weibull Distribution [J].
Almalki, Saad J. ;
Nadarajah, Saralees .
IEEE TRANSACTIONS ON RELIABILITY, 2014, 63 (01) :68-80
[4]   A new discrete distribution [J].
Bakouch, Hassan S. ;
Jazi, M. Aghababaei ;
Nadarajah, Saralees .
STATISTICS, 2014, 48 (01) :200-240
[5]   The discrete additive Weibull distribution: A bathtub-shaped hazard for discontinuous failure data [J].
Bebbington, Mark ;
Lai, Chin-Diew ;
Wellington, Morgan ;
Zitikis, Ricardas .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2012, 106 :37-44
[6]   Another generalization of the geometric distribution [J].
Gomez-Deniz, E. .
TEST, 2010, 19 (02) :399-415
[7]   The discrete Lindley distribution: properties and applications [J].
Gomez-Deniz, Emilio ;
Calderin-Ojeda, Enrique .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2011, 81 (11) :1405-1416
[8]   Generalized exponential distributions [J].
Gupta, RD ;
Kundu, D .
AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 1999, 41 (02) :173-188
[9]  
Kemp AW, 2008, STAT IND TECHNOL, P353, DOI 10.1007/978-0-8176-4626-4_27
[10]  
Krishna H., 2009, STAT METHODOL, V6, P177, DOI [10.1016/j.stamet.2008.07.001, DOI 10.1016/J.STAMET.2008.07.001]