Hurewicz's theorems and renormings of Banach spaces

被引:6
作者
Bossard, B [1 ]
Godefroy, G [1 ]
Kaufman, R [1 ]
机构
[1] UNIV ILLINOIS,DEPT MATH,URBANA,IL 61801
关键词
D O I
10.1006/jfan.1996.0102
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let N(X) be the set of all equivalent norms on a separable Banach space X, equipped with the topology of uniform convergence on bounded subsets of X. We show that if X is infinite dimensional, the set of all locally uniformly rotund norms on X reduces every coanalytic set and, thus, is in particular non-Borel. Dually, we show the same result for the set of all continuously differentiable norms on X, under the assumption X* is separable. This provides an analogue to a classical result of Mazurkiewicz within convex analysis. (C) 1996 Academic Press, Inc.
引用
收藏
页码:142 / 150
页数:9
相关论文
共 13 条
[1]  
[Anonymous], 1987, LONDON MATH SOC LECT
[2]  
BOSSARD B, 1993, CR ACAD SCI I-MATH, V316, P1005
[3]  
Bossard B., 1994, THESIS U PARIS 6
[4]  
BOSSARD B, IN PRESS ILLINOIS J
[5]  
CHRISTENSEN JPR, 1974, N MATH STUD, V10
[6]  
DEBS G, IN PRESS CANAD J MAT
[7]  
Deville R., 1993, PITMAN MONOGRAPHS SU, V64
[8]  
Hurewicz W., 1928, FUND MATH, V12, P78
[9]  
KAUFMAN R, 1994, CIRCULATED NOTES
[10]   THE STRUCTURE OF SIGMA-IDEALS OF COMPACT-SETS [J].
KECHRIS, AS ;
LOUVEAU, A ;
WOODIN, WH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 301 (01) :263-288