Internal wave attractors in three-dimensional geometries: trapping by oblique reflection

被引:24
作者
Pillet, G. [1 ]
Ermanyuk, E. V. [2 ,3 ]
Maas, L. R. M. [4 ]
Sibgatullin, I. N. [5 ]
Dauxois, T. [1 ]
机构
[1] Univ Lyon, CNRS, ENS Lyon, UCBL,Lab Phys, F-69342 Lyon, France
[2] Lavrentyev Inst Hydrodynam, Av Lavrentyev 15, Novosibirsk 630090, Russia
[3] Novosibirsk State Univ, Pirogova Str 2, Novosibirsk 630090, Russia
[4] Univ Utrecht, Inst Marine & Atmospher Res, NL-3584 CC Utrecht, Netherlands
[5] Lomonosov Moscow State Univ, Moscow 119991, Russia
关键词
geophysical and geological flows; internal waves; stratified flows; EMPIRICAL MODE DECOMPOSITION; ONE SLOPING BOUNDARY; INERTIAL WAVES; RECTANGULAR BASIN; PROPAGATION; SPECTRUM; ENERGY; FLUID; OCEAN; INSTABILITY;
D O I
10.1017/jfm.2018.236
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study experimentally the propagation of internal waves in two different three-dimensional (3D) geometries, with a special emphasis on the refractive focusing due to the 3D reflection of obliquely incident internal waves on a slope. Both studies are initiated by ray tracing calculations to determine the appropriate experimental parameters. First, we consider a 3D geometry, the classical set-up to get simple, two-dimensional (2D) parallelogram-shaped attractors in which waves are forced in a direction perpendicular to a sloping bottom. Here, however, the forcing is of reduced extent in the along-slope, transverse direction. We show how the refractive focusing mechanism explains the formation of attractors over the whole width of the tank, even away from the forcing region. Direct numerical simulations confirm the dynamics, emphasize the role of boundary conditions and reveal the phase shifting in the transverse direction. Second, we consider a long and narrow tank having an inclined bottom, to simply reproduce a canal. In this case, the energy is injected in a direction parallel to the slope. Interestingly, the wave energy ends up forming 2D internal wave attractors in planes that are transverse to the initial propagation direction. This focusing mechanism prevents indefinite transmission of most of the internal wave energy along the canal.
引用
收藏
页码:203 / 225
页数:23
相关论文
共 53 条
[1]  
Alford M. H., 2007, GEOPHYS RES LETT, V35
[2]   Redistribution of energy available for ocean mixing by long-range propagation of internal waves [J].
Alford, MH .
NATURE, 2003, 423 (6936) :159-162
[3]   Damping of quasi-two-dimensional internal wave attractors by rigid-wall friction [J].
Beckebanze, F. ;
Brouzet, C. ;
Sibgatullin, I. N. ;
Maas, L. R. M. .
JOURNAL OF FLUID MECHANICS, 2018, 841 :614-635
[4]  
Bordes G., 2012, THESIS
[5]   Finite-size effects in parametric subharmonic instability [J].
Bourget, Baptiste ;
Scolan, Helene ;
Dauxois, Thierry ;
Le Bars, Michael ;
Odier, Philippe ;
Joubaud, Sylvain .
JOURNAL OF FLUID MECHANICS, 2014, 759 :739-750
[6]   Experimental study of parametric subharmonic instability for internal plane waves [J].
Bourget, Baptiste ;
Dauxois, Thierry ;
Joubaud, Sylvain ;
Odier, Philippe .
JOURNAL OF FLUID MECHANICS, 2013, 723 :1-20
[7]   Scale effects in internal wave attractors [J].
Brouzet, C. ;
Sibgatullin, I. N. ;
Ermanyuk, E. V. ;
Joubaud, S. ;
Dauxois, T. .
PHYSICAL REVIEW FLUIDS, 2017, 2 (11)
[8]   Internal wave attractors: different scenarios of instability [J].
Brouzet, C. ;
Ermanyuk, E. ;
Joubaud, S. ;
Pillet, G. ;
Dauxois, T. .
JOURNAL OF FLUID MECHANICS, 2017, 811 :544-568
[9]   Internal wave attractors examined using laboratory experiments and 3D numerical simulations [J].
Brouzet, C. ;
Sibgatullin, I. N. ;
Scolan, H. ;
Ermanyuk, E. V. ;
Dauxois, T. .
JOURNAL OF FLUID MECHANICS, 2016, 793 :109-131
[10]   Energy cascade in internal-wave attractors [J].
Brouzet, C. ;
Ermanyuk, E. V. ;
Joubaud, S. ;
Sibgatullin, I. ;
Dauxois, T. .
EPL, 2016, 113 (04)