Differential inequalities related to Salagean type integral operator involving extended generalized Mittag-Leffler function

被引:1
作者
Al-Janaby, Hiba Fawzi [1 ]
Ahmad, Muhammad Zaini [2 ]
机构
[1] Univ Baghdad, Dept Math, Coll Sci, Baghdad, Iraq
[2] Univ Malaysia Perlis, Inst Engn Math, Arau Perlis 02600, Malaysia
来源
3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND STATISTICS | 2018年 / 1132卷
关键词
CONVEX;
D O I
10.1088/1742-6596/1132/1/012061
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, the generalized Mittag-Leffler (EGML) function is extended by utilizing the extended Beta function. Based on this type of function, we provide a new integral operator in the open unit disk. The present article discusses several applications of differential subordination for certain normalized analytic functions in the open unit disk, which are acted upon by Salagean type integral operator.
引用
收藏
页数:9
相关论文
共 23 条
[1]   Functions which map the interior of the unit circle upon simple regions. [J].
Alexander, JW .
ANNALS OF MATHEMATICS, 1915, 17 :12-22
[2]   On differential Sandwich theorems of analytic functions defined by generalized Salagean integral operator [J].
Aouf, M. K. ;
Seoudy, T. M. .
APPLIED MATHEMATICS LETTERS, 2011, 24 (08) :1364-1368
[3]   CONVEX AND STARLIKE UNIVALENT FUNCTIONS [J].
BERNARDI, SD .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 135 (JAN) :429-&
[4]  
Bulut S, 2014, MATH J OKAYAMA U, V56, P171
[5]   Extended hypergeometric and confluent hypergeornetric functions [J].
Chaudhry, MA ;
Qadir, A ;
Srivastava, HM ;
Paris, RB .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 159 (02) :589-602
[6]  
De Branges L, 1984, ACTA MATH, V154, P137
[7]  
Goluzin G.M., 1935, DOKL AKAD NAUK SSSR, V42, P647
[8]  
Goodman A. W., 1983, UNIVALENT FUNCTIONS
[9]   SUBORDINATION BY CONVEX FUNCTIONS [J].
HALLENBECK, DJ ;
RUSCHEWEYH, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 52 (OCT) :191-195
[10]   Upper and lower bounds of integral operator defined by the fractional hypergeometric function [J].
Ibrahim, Rabha W. ;
Ahmad, Muhammad Zaini ;
Al-Janaby, Hiba F. .
OPEN MATHEMATICS, 2015, 13 :768-780