Unbounded Fatou components of composite transcendental meromorphic functions with finitely many poles

被引:0
|
作者
Maneeruk, Keaitsuda [1 ]
Niamsup, Piyapong [1 ]
机构
[1] Chiang Mai Univ, Fac Sci, Dept Math, Chiang Mai 50200, Thailand
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2008年 / 12卷 / 05期
关键词
transcendental meromorphic function; unbounded Fatou component; Julia set;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f(i), i = 1, 2, ..., m be transcendental meromorphic functions of order less than 1/2 with at most finitely many poles and at least one of them has positive lower order. Let g = f(m) circle f(m-1) circle ... circle f(1). Then either g has no unbounded Fatou components or at least one unbounded Fatou component g is multiply connected.
引用
收藏
页码:1123 / 1129
页数:7
相关论文
共 5 条
  • [1] On the Growth of Transcendental Entire Functions with Unbounded Fatou Components
    伍家凤
    徐光伟
    王小灵
    Journal of DongHua University, 2006, (02) : 80 - 82
  • [2] Fatou components and singularities of meromorphic functions
    Baranski, Krzysztof
    Fagella, Nuria
    Jarque, Xavier
    Karpinska, Boguslawa
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (02) : 633 - 654
  • [3] Iterates of meromorphic functions on escaping Fatou components
    Zheng, Jian-Hua
    Wu, Cheng-Fa
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023, 153 (06) : 1906 - 1928
  • [4] Boundedness of components of Fatou sets of entire and meromorphic functions
    Zheng, JH
    Wang, S
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2004, 35 (10) : 1137 - 1148
  • [5] Local connectivity of boundaries of tame Fatou components of meromorphic functions
    Baranski, Krzysztof
    Fagella, Nuria
    Jarque, Xavier
    Karpinska, Boguslawa
    MATHEMATISCHE ANNALEN, 2025, 391 (02) : 1779 - 1843