An ensemble Kalman-Bucy filter for continuous data assimilation

被引:66
作者
Bergemann, Kay [1 ]
Reich, Sebastian [1 ]
机构
[1] Univ Potsdam, Inst Math, D-14469 Potsdam, Germany
关键词
D O I
10.1127/0941-2948/2012/0307
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The ensemble Kalman filter has emerged as a promising filter algorithm for nonlinear differential equations subject to intermittent observations. In this paper, we extend the well-known Kalman-Bucy filter for linear differential equations subject to continous observations to the ensemble setting and nonlinear differential equations. The proposed filter is called the ensemble Kalman-Bucy filter and its performance is demonstrated for a simple mechanical model (Langevin dynamics) subject to incremental observations of its velocity.
引用
收藏
页码:213 / 219
页数:7
相关论文
共 19 条
[1]  
AMEZCUA J., Q J ROY METEOR UNPUB
[2]   A mollified ensemble Kalman filter [J].
Bergemann, Kay ;
Reich, Sebastian .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2010, 136 (651) :1636-1643
[3]   A localization technique for ensemble Kalman filters [J].
Bergemann, Kay ;
Reich, Sebastian .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2010, 136 (648) :701-707
[4]   Ensemble propagation and continuous matrix factorization algorithms [J].
Bergemann, Kay ;
Gottwald, Georg ;
Reich, Sebastian .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2009, 135 (643) :1560-1572
[5]  
Burgers G, 1998, MON WEATHER REV, V126, P1719, DOI 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO
[6]  
2
[7]  
Evensen G., 2006, Data Assimilation: The Ensemble Kalman Filter
[8]  
Gardiner C.W., 2004, Springer Series in Synergetics, VVolume 13
[9]   Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter [J].
Hunt, Brian R. ;
Kostelich, Eri J. ;
Szunyogh, Istvan .
PHYSICA D-NONLINEAR PHENOMENA, 2007, 230 (1-2) :112-126
[10]  
Jazwinski A., 1970, STOCHASTIC PROCESSES