A Robust Method for Wheatear Detection Using UAV in Natural Scenes

被引:38
作者
He, Ming-Xiang [1 ,2 ]
Hao, Peng [1 ]
Xin, You-Zhi [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Qingdao 266590, Peoples R China
[2] Shandong Univ Sci & Technol, Natl Virtual Simulat Expt Ctr, Qingdao 266590, Peoples R China
关键词
Wheatear detection; improved YoloV4; UAV; object detection; deep learning;
D O I
10.1109/ACCESS.2020.3031896
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, deep learning has greatly improved the ability of wheatear detection. However, there are still three main problems in wheatear detection based on unmanned aerial vehicle (UAV) platforms. First, dense wheat plants often overlap, and the wind direction will blur the pictures, which obviously interferes with the detection of wheatears; second, due to the different maturity, color, genotype, and head orientation, the appearance will also be different; third, UAV needs to take images in the field and conduct real-time detection, which requires the embedded module to detect wheatears quickly and accurately. Given the above problems, we studied and improved YoloV4, and proposed a robust method for wheatear detection using UAV in natural scenes. For the First problem, we modified the network structure, deleted the feature map with a size of 19D 19, and used k-means algorithm to re-cluster the anchors, and we proposed a method of prediction box fusion. For the second problem, we used the pseudo-labeling method and data augmentation methods to improve the generalization ability of the model. For the third problem, we simplified the network structure, replaced the original network convolution with the improved depthwise separable convolution, and proposed an adaptive ReLU activation function to reduce the amount of calculation and speed up the calculation. The experimental results showed that our method can effectively mark the bounding of wheatears. In test sets, our method achieves 96.71% in f1-score, which is 9.61% higher than the state of the art method, and the detection speed is 23% faster than the original method. It can be concluded that our method can effectively solve the problems of wheatear detection based on the UAV platform in natural science.
引用
收藏
页码:189043 / 189053
页数:11
相关论文
共 35 条
[1]   Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions [J].
Akkus, Zeynettin ;
Galimzianova, Alfiia ;
Hoogi, Assaf ;
Rubin, Daniel L. ;
Erickson, Bradley J. .
JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) :449-459
[2]  
Alsalam BHY, 2017, AEROSP CONF PROC
[3]  
[Anonymous], 2017, P 2017 COMPUTER VISI
[4]  
Bochkovskiy A., 2020, ARXIV200410934
[5]  
Czymmek V., 2020, P IEEE INT INSTR MEA, P1
[6]  
Dai J, 2016, PROCEEDINGS 2016 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), P1796, DOI 10.1109/ICIT.2016.7475036
[7]  
David E., 2020, ARXIV200502162
[8]  
Felzenszwalb P, 2008, PROC CVPR IEEE, P1984
[9]   Automatic wheat ear counting using machine learning based on RGB UAV imagery [J].
Fernandez-Gallego, Jose A. ;
Lootens, Peter ;
Borra-Serrano, Irene ;
Derycke, Veerle ;
Haesaert, Geert ;
Roldan-Ruiz, Isabel ;
Araus, Jose L. ;
Kefauver, Shawn C. .
PLANT JOURNAL, 2020, 103 (04) :1603-1613
[10]   Wheat ear counting in-field conditions: high throughput and low-cost approach using RGB images [J].
Fernandez-Gallego, Jose A. ;
Kefauver, Shawn C. ;
Aparicio Gutierrez, Nieves ;
Teresa Nieto-Taladriz, Maria ;
Luis Araus, Jose .
PLANT METHODS, 2018, 14