Convolution and Involution on Function Spaces of Homogeneous Spaces

被引:0
作者
Farashahi, Arash Ghaani [1 ]
机构
[1] FUM, Fac Math Sci, Dept Pure Math, Mashhad 91775, Iran
关键词
Convolution; involution; homogeneous space; relatively invariant measure; G-invariant measure;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a locally compact group and also let H be a compact subgroup of G. It is shown that, if mu is a relatively invariant measure on G/H then there is a well-defined convolution on L-1 (G/H, mu) such that the Banach space L-1 (G/H, mu) becomes a Banach algebra. We also find a generalized definition of this convolution for other L-P-spaces. Finally, we show that various types of involutions can be considered on G/H.
引用
收藏
页码:1109 / 1122
页数:14
相关论文
共 7 条
[1]  
[Anonymous], 2000, CLASSICAL HARMONIC A
[2]  
Dey T.K., 2007, CAMBRIDGE MONOGRAPHS
[3]  
Folland, 1995, STUDIES ADV MATH
[4]   Fourier analysis on coset spaces [J].
Forrest, B .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1998, 28 (01) :173-190
[5]  
HEWITT E., 1963, ABSTRACT HARMONIC AN, V1
[6]  
Kamyabi-Gol RA, 2009, B IRAN MATH SOC, V35, P129
[7]   Wavelet transforms via generalized quasi-regular representations [J].
Kamyabi-Gol, R. A. ;
Tavallaei, N. .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2009, 26 (03) :291-300