The maximum likelihood degree of a very affine variety

被引:56
作者
Huh, June [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
maximum likelihood degree; logarithmic differential form; Chern-Schwartz-MacPherson class; CHERN CLASSES; CRITICAL-POINTS; PRODUCT; HYPERSURFACES; POWERS;
D O I
10.1112/S0010437X13007057
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the maximum likelihood degree of a smooth very affine variety is equal to the signed topological Euler characteristic. This generalizes Orlik and Terao's solution to Varchenko's conjecture on complements of hyperplane arrangements to smooth very affine varieties. For very affine varieties satisfying a genericity condition at infinity, the result is further strengthened to relate the variety of critical points to the Chern-Schwartz-MacPherson class. The strengthened version recovers the geometric deletion restriction formula of Denham et al. for arrangement complements, and generalizes Kouchnirenko's theorem on the Newton polytope for nondegenerate hypersurfaces.
引用
收藏
页码:1245 / 1266
页数:22
相关论文
共 56 条
[1]  
Aluffi P, 2005, TRENDS MATH, P1, DOI 10.1007/3-7643-7342-3_1
[2]   Chern classes for singular varieties, revisited. [J].
Aluffi, P .
COMPTES RENDUS MATHEMATIQUE, 2006, 342 (06) :405-410
[4]   Differential forms with logarithmic poles and Chern-Schwartz-MacPherson classes of singular varieties [J].
Aluffi, P .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (07) :619-624
[5]  
Aluffi P, 2006, PURE APPL MATH Q, V2, P915
[6]   Grothendieck Classes and Chern Classes of Hyperplane Arrangements [J].
Aluffi, Paolo .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (08) :1873-1900
[7]  
[Anonymous], 1983, PROGR MATH
[8]  
[Anonymous], THESIS U CALIFORNIA
[9]   The maximum likelihood degree [J].
Catanese, Fabrizio ;
Hosten, Serkan ;
Khetan, Amit ;
Sturmfels, Bernd .
AMERICAN JOURNAL OF MATHEMATICS, 2006, 128 (03) :671-697
[10]   Homaloidal hypersurfaces and hypersurfaces with vanishing Hessian [J].
Ciliberto, Ciro ;
Russo, Francesco ;
Simis, Aron .
ADVANCES IN MATHEMATICS, 2008, 218 (06) :1759-1805