A simple approach for making a viable, safe, and high-performances lithium-sulfur battery

被引:69
作者
Carbone, Lorenzo [1 ]
Coneglian, Thomas [2 ]
Gobet, Mallory [3 ]
Munoz, Stephen [3 ,4 ]
Devany, Matthew [5 ]
Greenbaum, Steve [3 ]
Hassoun, Jusef [2 ]
机构
[1] Sapienza Univ Rome, Chem Dept, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[2] Univ Ferrara, Dept Chem & Pharmaceut Sci, Via Fossato Mortara, I-44121 Ferrara, Italy
[3] CUNY Hunter Coll, Dept Phys & Astron, New York, NY 10065 USA
[4] CUNY, PhD Program Phys, New York, NY 10016 USA
[5] CUNY Hunter Coll, Dept Chem & Biochem, New York, NY 10065 USA
基金
美国国家卫生研究院;
关键词
Lithium/sulfur; Low-flammability; Diethylene glycol dimethyl ether; Carbon nanotubes; NMR/EIS; GLYCOL DIMETHYL ETHER; ION BATTERIES; ELECTROLYTE; POLYSULFIDE; SHUTTLE; MECHANISM; SYSTEMS; CELLS; ANODE; LINO3;
D O I
10.1016/j.jpowsour.2017.11.079
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report an electrolyte with low flammability, based on diethylene glycol dimethyl ether (DEGDME) dissolving lithium bis-trifluoromethane sulfonimidate (LiTFSI), and lithium nitrate (LiNO3) for high-performances lithium/sulfur battery. Self-diffusion coefficients, conductivity, and lithium transport number of the electrolyte are obtained by nuclear magnetic resonance and electrochemical impedance spectroscopy. Interface stability, lithium stripping/deposition ability, and the electrochemical stability window of the electrolyte are determined by voltammetry and impedance spectroscopy. The tests suggest conductivity higher than 10(-2) S cm(-1), lithium transport number of about 0.5, electrochemical stability extending from 0 V to 4.6 V, and excellent compatibility with lithium metal. A composite cathode using sulfur and multi walled carbon nanotubes (MWCNTs) is characterized in terms of structure and morphology by X-ray diffraction and scanning electron microscopy. The study shows spherical flakes in which the carbon nanotubes protect the crystalline sulfur from excessive dissolution, and create the optimal host for allowing the proper cell operation. The Li/S cell reveals highly reversible process during charge/discharge cycles, fast kinetic, and lithium diffusion coefficient in the sulfur electrode ranging from 10(-12) to 10(-10) cm(2) s(-1). The cell evidences a coulombic efficiency approaching 100%, capacity from 1300 mAh g(-1) to 900 mAh g(-1) and practical energy density higher than 400 Wh kg(-1).
引用
收藏
页码:26 / 35
页数:10
相关论文
共 63 条
[51]   Dual Protection of Sulfur by Carbon Nanospheres and Graphene Sheets for Lithium- Sulfur Batteries [J].
Wang, Bei ;
Wen, Yanfen ;
Ye, Delai ;
Yu, Hua ;
Sun, Bing ;
Wang, Guoxiu ;
Hulicova-Jurcakova, Denisa ;
Wang, Lianzhou .
CHEMISTRY-A EUROPEAN JOURNAL, 2014, 20 (18) :5224-5230
[52]   Direct Observation of Sulfur Radicals as Reaction Media in Lithium Sulfur Batteries [J].
Wang, Qiang ;
Zheng, Jianming ;
Walter, Eric ;
Pan, Huilin ;
Lv, Dongping ;
Zuo, Pengjian ;
Chen, Honghao ;
Deng, Z. Daniel ;
Liaw, Bor Yann ;
Yu, Xiqian ;
Yang, Xiaoqing ;
Zhang, Ji-Guang ;
Liu, Jun ;
Xiao, Jie .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (03) :A474-A478
[53]   The electrochemical performance of lithium-sulfur batteries with LiClO4 DOL/DME electrolyte [J].
Wang, Weikun ;
Wang, You ;
Huang, Yaqin ;
Huang, Chongjun ;
Yu, Zhongbao ;
Zhang, Hao ;
Wang, Anbang ;
Yuan, Keguo .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2010, 40 (02) :321-325
[54]   History, Evolution, and Future Status of Energy Storage [J].
Whittingham, M. Stanley .
PROCEEDINGS OF THE IEEE, 2012, 100 :1518-1534
[55]   Following the Transient Reactions in Lithium-Sulfur Batteries Using an In Situ Nuclear Magnetic Resonance Technique [J].
Xiao, Jie ;
Hu, Jian Zhi ;
Chen, Honghao ;
Vijayakumar, M. ;
Zheng, Jianming ;
Pan, Huilin ;
Walter, Eric D. ;
Hu, Mary ;
Deng, Xuchu ;
Feng, Ju ;
Liaw, Bor Yann ;
Gu, Meng ;
Deng, Zhiqun Daniel ;
Lu, Dongping ;
Xu, Suochang ;
Wang, Chongmin ;
Liu, Jun .
NANO LETTERS, 2015, 15 (05) :3309-3316
[56]   A Soft Approach to Encapsulate Sulfur: Polyaniline Nanotubes for Lithium-Sulfur Batteries with Long Cycle Life [J].
Xiao, Lifen ;
Cao, Yuliang ;
Xiao, Jie ;
Schwenzer, Birgit ;
Engelhard, Mark H. ;
Saraf, Laxmikant V. ;
Nie, Zimin ;
Exarhos, Gregory J. ;
Liu, Jun .
ADVANCED MATERIALS, 2012, 24 (09) :1176-1181
[57]   Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium-sulfur batteries [J].
Xiong, Shizhao ;
Xie, Kai ;
Diao, Yan ;
Hong, Xiaobin .
JOURNAL OF POWER SOURCES, 2014, 246 :840-845
[58]   Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium-sulfur batteries [J].
Xiong, Shizhao ;
Xie, Kai ;
Diao, Yan ;
Hong, Xiaobin .
ELECTROCHIMICA ACTA, 2012, 83 :78-86
[59]   Improving the Performance of Lithium-Sulfur Batteries by Conductive Polymer Coating [J].
Yang, Yuan ;
Yu, Guihua ;
Cha, Judy J. ;
Wu, Hui ;
Vosgueritchian, Michael ;
Yao, Yan ;
Bao, Zhenan ;
Cui, Yi .
ACS NANO, 2011, 5 (11) :9187-9193
[60]   Powering Lithium-Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts [J].
Yuan, Zhe ;
Peng, Hong-Jie ;
Hou, Ting-Zheng ;
Huang, Jia-Qi ;
Chen, Cheng-Meng ;
Wang, Dai-Wei ;
Cheng, Xin-Bing ;
Wei, Fei ;
Zhang, Qiang .
NANO LETTERS, 2016, 16 (01) :519-527