Comparative transcriptome analyses of barley and rice under salt stress

被引:72
|
作者
Ueda, A
Kathiresan, A
Bennett, J
Takabe, T [1 ]
机构
[1] Nagoya Univ, Grad Sch Bioagr Sci, Chikusa Ku, Nagoya, Aichi 4648601, Japan
[2] Int Rice Res Inst, Div Plant Breeding Genet & Biochem, Manila, Philippines
关键词
D O I
10.1007/s00122-006-0231-4
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Although barley and rice belong to the same family Poaceae, they differ in their ability to tolerate salt stress. In an attempt to understand the molecular bases of such differences, we compared changes in transcriptome between barley and rice in response to salt stress using barley cDNA microarrays. At 1 and 24 h after salt stress, many genes were up-regulated in barley, but not in rice. Leaf water potential declined in the first 10 h of stress in both species, but recovered in the period 24-48 h only in barley. In addition, we found that barley partitioned Na+ to the roots and away from the shoots more efficiently than rice. These differences in physiological responses were correlated with the differences in the steady-state abundance of transcripts for the genes related to adaptive functions. Transcripts for plasma membrane protein 3 and inorganic pyrophosphatase were up-regulated in both species, but only transiently in rice. This indicates that adaptive mechanisms for regulating ion homeostasis are partly conserved in the two species, but it seems that rice cannot sustain cellular ion homeostasis for a long time like barley. These results imply that genetic modification of regulatory controls of early salt-responsive genes might lead to development of the salt tolerance trait in rice.
引用
收藏
页码:1286 / 1294
页数:9
相关论文
共 50 条
  • [31] Transcriptome sequencing of Festulolium accessions under salt stress
    A. Teshome
    S. L. Byrne
    T. Didion
    J. De Vega
    C. S. Jensen
    M. Klaas
    S. Barth
    BMC Research Notes, 12
  • [32] Transcriptome sequencing of Festulolium accessions under salt stress
    Teshome, A.
    Byrne, S. L.
    Didion, T.
    De Vega, J.
    Jensen, C. S.
    Klaas, M.
    Barth, S.
    BMC RESEARCH NOTES, 2019, 12 (1)
  • [33] Analysis of the Prunellae Spica transcriptome under salt stress
    Liu, Zixiu
    Hua, Yujiao
    Wang, Shengnan
    Liu, Xunhong
    Zou, Lisi
    Chen, Cuihua
    Zhao, Hui
    Yan, Ying
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2020, 156 : 314 - 322
  • [34] Transcriptome profiling of rice seedlings under cold stress
    da Maia, Luciano C.
    Cadore, Pablo R. B.
    Benitez, Leticia C.
    Danielowski, Rodrigo
    Braga, Eugenia J. B.
    Fagundes, Paulo R. R.
    Magalhaes, Ariano M., Jr.
    de Oliveira, Antonio Costa
    FUNCTIONAL PLANT BIOLOGY, 2017, 44 (04) : 419 - 429
  • [35] Transcriptome and GWAS Analyses Reveal Candidate Gene for Root Traits of Alfalfa during Germination under Salt Stress
    He, Fei
    Yang, Tianhui
    Zhang, Fan
    Jiang, Xueqian
    Li, Xianyang
    Long, Ruicai
    Wang, Xue
    Gao, Ting
    Wang, Chuan
    Yang, Qingchuan
    Chen, Lin
    Kang, Junmei
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (07)
  • [36] Metabolome and Transcriptome Analyses Unravel the Molecular Regulatory Mechanisms Involved in Photosynthesis of Cyclocarya paliurus under Salt Stress
    Zhang, Lei
    Zhang, Zijie
    Fang, Shengzuo
    Liu, Yang
    Shang, Xulan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (03)
  • [37] Integrated Metabolome and Transcriptome Analyses Reveal the Mechanisms Regulating Flavonoid Biosynthesis in Blueberry Leaves under Salt Stress
    Ma, Bin
    Song, Yan
    Feng, Xinghua
    Guo, Pu
    Zhou, Lianxia
    Jia, Sijin
    Guo, Qingxun
    Zhang, Chunyu
    HORTICULTURAE, 2024, 10 (10)
  • [38] Physiological and Transcriptome Analyses Reveal Short-Term Responses and Formation of Memory Under Drought Stress in Rice
    Li, Ping
    Yang, Hong
    Wang, Lu
    Liu, Haoju
    Huo, Heqiang
    Zhang, Chengjun
    Liu, Aizhong
    Zhu, Andan
    Hu, Jinyong
    Lin, Yongjun
    Liu, Li
    FRONTIERS IN GENETICS, 2019, 10
  • [39] Transcriptome sequencing and comparative analysis of differentially expressed genes in the roots of Musa Paradisiaca under salt stress
    Fusang Ji
    Lu Tang
    Zhen Yang
    Yuanyuan Li
    Wenchang Wang
    Ya Xu
    Shuangmei Li
    Xinguo Li
    Plant Biotechnology Reports, 2021, 15 : 389 - 401
  • [40] Comparative transcriptome analysis reveals variations of bioactive constituents in Lonicera japonica flowers under salt stress
    Cai, Zhichen
    Wang, Chengcheng
    Chen, Cuihua
    Zou, Lisi
    Yin, Shengxin
    Liu, Shengjin
    Yuan, Jiahuan
    Wu, Nan
    Liu, Xunhong
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2022, 173 : 87 - 96