INTEGRAL REPRESENTATIONS AND CONTINUOUS PROJECTORS IN SOME SPACES OF ANALYTIC AND PLURIHARMONIC FUNCTIONS

被引:0
作者
Oniani, Gigla [1 ]
Tsibadze, Lamara [1 ]
机构
[1] Kutaisi State Univ, Dept Math, GE-4600 Kutaisi, Georgia
关键词
Integral representation; continuous projector; pluriharmonic function; Bergmann class; K-limit; fractional integral;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider analytic and pluriharmonic functions belonging to the classes B-p(Omega) and b(p)(Omega) and defined in the ball Omega subset of C-n. The theorems established in the paper make it possible to obtain some integral representations of functions of the above-mentioned classes. The existence of bounded projectors from the space L(rho, Omega) into the space B-P(Omega) and from the space L(rho, Omega) into the space b(p)(Omega) is proved. Also, consideration is given to the existence of boundary values of fractional integrals of functions of the spaces B-p(Omega) and b(p)(Omega).
引用
收藏
页码:739 / 752
页数:14
相关论文
共 15 条
[1]  
Duren P. L., 1970, PURE APPL MATH, V38, DOI [10.1016/S0079-8169(08)62672-0, DOI 10.1016/S0079-8169(08)62672-0]
[2]  
DUREN PL, 1969, J REINE ANGEW MATH, V238, P32
[3]  
DZHJRBASHYAN MM, 1948, SOOBSHCH IN TA MAT M, P3
[4]  
Dzhrbashyan M.M., 1945, DOKL AKAD NAUK ARMYA, V3, P3
[5]   PROJECTIONS ON SPACES OF HOLOMORPHIC FUNCTIONS IN BALLS [J].
FORELLI, F ;
RUDIN, W .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1974, 24 (06) :593-602
[6]   DUAL SPACE OF HP OF POLYDISK FOR O LESS THAN P LESS THAN 1 [J].
FRAZIER, AP .
DUKE MATHEMATICAL JOURNAL, 1972, 39 (02) :369-&
[7]   Some properties of fractional integrals II [J].
Hardy, GH ;
Littlewood, JE .
MATHEMATISCHE ZEITSCHRIFT, 1932, 34 :403-439
[8]  
KHOLMOGOROV AN, 1976, ELEMENTS THEORY FUNC
[9]   REPRESENTATION OF LINEAR FUNCTIONALS IN HP SPACES OVER BOUNDED SYMMETRIC DOMAINS IN CN [J].
MITCHELL, J ;
HAHN, KT .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1976, 56 (02) :379-396
[10]   MOEBIUS-INVARIANT FUNCTION SPACES ON BALLS AND SPHERES [J].
NAGEL, A ;
RUDIN, W .
DUKE MATHEMATICAL JOURNAL, 1976, 43 (04) :841-865