Taming chaos in damped driven systems by incommensurate excitations

被引:9
作者
Chacon, R. [1 ,2 ]
Miralles, J. J. [3 ]
Martinez, J. A. [4 ]
Balibrea, F. [5 ]
机构
[1] Univ Extremadura, Escuela Ingn Ind, Dept Fis Aplicada, Apartado Postal 382, E-06006 Badajoz, Spain
[2] Univ Extremadura, Inst Computac Cient Avanzada ICCAEx, E-06006 Badajoz, Spain
[3] Univ Castilla La Mancha, Escuela Ingenieros Ind, Dept Fis Aplicada, E-02071 Albacete, Spain
[4] Univ Castilla La Mancha, Escuela Ingenieros Ind, Dept Ingn Elect Elect & Automat, E-02071 Albacete, Spain
[5] Univ Murcia, Fac Matemat, Dept Matemat, Campus Espinardo, E-30100 Murcia, Spain
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2019年 / 73卷
关键词
Chaos suppression; Incommensurate excitations; Melnikov analysis; Lyapunov exponents; NONLINEAR OSCILLATOR; SUPPRESSION; PHASE; PERTURBATION; DYNAMICS; LASER;
D O I
10.1016/j.cnsns.2019.02.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The possibility of reducing and even suppressing chaos in dissipative nonautonomous systems by additional incommensurate chaos-suppressing excitations is theoretically demonstrated through the universal example of a perturbed Duffing oscillator by considering rational approximations to the irrational ratio Omega/omega between the chaos-suppressing and chaos-inducing frequencies. For each chosen rational approximation, analytical predictions for the suitable amplitudes and initial phases of the chaos-suppressing excitation are numerically confirmed for small amplitudes and at the predicted suitable initial phases. For the significant case of the golden ratio Phi = (1 + root 5) /2, we study the structural stability of the suppressory scenario as the respective convergents approximate the irrational ratio Omega/omega = 1/Phi. Our theory predicts and numerical simulations confirm that the values of the suitable amplitudes are rather insensitive to high-order convergents. On the contrary, the number and values of the suitable initial phases critically depend on each particular convergent in order to satisfy two requirements: (1) Maximum approximation to the frustration of the homoclinic bifurcation existing in the absence of the chaos-suppressing excitation and (2) maximum survival of a relevant spatio-temporal symmetry of the dynamical equation. (c) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:307 / 318
页数:12
相关论文
共 44 条
  • [1] Taming Winfree turbulence of scroll waves in excitable media
    Alonso, S
    Sagués, F
    Mikhailov, AS
    [J]. SCIENCE, 2003, 299 (5613) : 1722 - 1725
  • [2] [Anonymous], 1975, INTRO THEORY NUMBERS
  • [3] CONTROLLING CHAOS IN SPIN-WAVE INSTABILITIES
    AZEVEDO, A
    REZENDE, SM
    [J]. PHYSICAL REVIEW LETTERS, 1991, 66 (10) : 1342 - 1345
  • [4] Barone A, 1982, Physics and applications of the Josephson effect
  • [5] Quasi-periodic oscillations, chaos and suppression of chaos in a nonlinear oscillator driven by parametric and external excitations
    Belhaq, M
    Houssni, M
    [J]. NONLINEAR DYNAMICS, 1999, 18 (01) : 1 - 24
  • [6] Suppression of chaos in a nonlinear oscillator with parametric and external excitation
    Belhaq, M
    Houssni, M
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (08) : 5147 - 5155
  • [7] The control of chaos: theory and applications
    Boccaletti, S
    Grebogi, C
    Lai, YC
    Mancini, H
    Maza, D
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 329 (03): : 103 - 197
  • [8] Inhibition of chaotic escape from a potential well by incommensurate escape-suppressing excitations -: art. no. 036213
    Chacón, R
    Martínez, JA
    [J]. PHYSICAL REVIEW E, 2002, 65 (03):
  • [9] Chacon R, 2005, WORLD SCI SER NONLIN, V55, P1, DOI 10.1142/9789812703514
  • [10] Suppressing temporal and spatio-temporal chaos by multiple weak resonant excitations:: Application to arrays of chaotic coupled oscillators
    Chacón, R
    Preciado, V
    Tereshko, V
    [J]. EUROPHYSICS LETTERS, 2003, 63 (05): : 667 - 673