Hyperthin nanochains composed of self-polymerizing protein shackles

被引:31
作者
Matsunaga, Ryo [1 ,2 ]
Yanaka, Saeko [1 ,2 ]
Nagatoishi, Satoru [1 ,3 ]
Tsumoto, Kouhei [1 ,2 ,3 ,4 ]
机构
[1] Univ Tokyo, Inst Med Sci, Med Prote Lab, Minato Ku, Tokyo 1088639, Japan
[2] Univ Tokyo, Grad Sch Frontier Sci, Dept Med Genome Sci, Kashiwa, Chiba 2778562, Japan
[3] Univ Tokyo, Grad Sch Engn, Dept Bioengn, Bunkyo Ku, Tokyo 1138656, Japan
[4] Univ Tokyo, Grad Sch Engn, Dept Chem & Biotechnol, Bunkyo Ku, Tokyo 1138656, Japan
关键词
ATOMIC-FORCE MICROSCOPY; ISOPEPTIDE BONDS; BUILDING-BLOCKS; AMYLOID FIBRILS; PILUS STRUCTURE; DESIGN; NANOWIRES; BIOMATERIALS; ORGANIZATION; HEMOPROTEIN;
D O I
10.1038/ncomms3211
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Protein fibrils are expected to have applications as functional nanomaterials because of their sophisticated structures; however, nanoscale ordering of the functional units of protein fibrils remains challenging. Here we design a series of self-polymerizing protein monomers, referred to as protein shackles, derived from modified recombinant subunits of pili from Streptococcus pyogenes. The monomers polymerize into nanochains through spontaneous irreversible covalent bond formation. We design the protein shackles so that their reactions can be controlled by altering redox conditions, which affect disulphide bond formation between engineered cysteine residues. The interaction between the monomers improves their polymerization reactivity and determines morphologies of the polymers. In addition, green fluorescent protein-tagged protein shackles can polymerize, indicating proteins can be stably attached to the nanochains with its functionality preserved. Furthermore we demonstrate that a molecular-recognizable nanochain binds to its partner with an enhanced binding ability in solution. These characteristics are expected to be applied for novel protein nanomaterials.
引用
收藏
页数:10
相关论文
共 47 条
[1]   Pilus biogenesis at the outer membrane of Gram-negative bacterial pathogens [J].
Allen, William J. ;
Phan, Gilles ;
Waksman, Gabriel .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2012, 22 (04) :500-506
[2]   Cytochrome display on amyloid fibrils [J].
Baldwin, AJ ;
Bader, R ;
Christodoulou, J ;
MacPhee, CE ;
Dobson, CM ;
Barker, PD .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (07) :2162-2163
[3]   Bipartite Design of a Self-Fibrillating Protein Copolymer with Nanopatterned Peptide Display Capabilities [J].
Bruning, Marc ;
Kreplak, Laurent ;
Leopoldseder, Sonja ;
Mueller, Shirley A. ;
Ringler, Philippe ;
Duchesne, Laurence ;
Fernig, David G. ;
Engel, Andreas ;
Ucurum-Fotiadis, Zoehre ;
Mayans, Olga .
NANO LETTERS, 2010, 10 (11) :4533-4537
[4]   Nature designs tough collagen: Explaining the nanostructure of collagen fibrils [J].
Buehler, Markus J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (33) :12285-12290
[5]   Controlled Self-Assembly of Rodlike Bacterial Pili Particles into Ordered Lattices [J].
Cao, Binrui ;
Xu, Hong ;
Mao, Chuanbin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (28) :6264-6268
[6]   Ultrastructural organization of amyloid fibrils by atomic force microscopy [J].
Chamberlain, AK ;
MacPhee, CE ;
Zurdo, J ;
Morozova-Roche, LA ;
Hill, HAO ;
Dobson, CM ;
Davis, JJ .
BIOPHYSICAL JOURNAL, 2000, 79 (06) :3282-3293
[7]   Actin Structure and Function [J].
Dominguez, Roberto ;
Holmes, Kenneth C. .
ANNUAL REVIEW OF BIOPHYSICS, VOL 40, 2011, 40 :169-186
[8]   COLLAGEN SUBSTRATA FOR STUDIES ON CELL BEHAVIOR [J].
ELSDALE, T ;
BARD, J .
JOURNAL OF CELL BIOLOGY, 1972, 54 (03) :626-&
[9]   FIELD-FLOW FRACTIONATION - ANALYSIS OF MACROMOLECULAR, COLLOIDAL, AND PARTICULATE MATERIALS [J].
GIDDINGS, JC .
SCIENCE, 1993, 260 (5113) :1456-1465
[10]   Effect of an amyloidogenic sequence attached to yellow fluorescent protein [J].
Hamada, Daizo ;
Tsumoto, Kouhei ;
Sawara, Makoto ;
Tanaka, Naoki ;
Nakahira, Kumiko ;
Shiraki, Kentaro ;
Yanagihara, Itaru .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2008, 72 (03) :811-821