Efficient water reduction with gallium phosphide nanowires

被引:128
作者
Standing, Anthony [1 ,2 ]
Assali, Simone [1 ]
Gao, Lu [3 ]
Verheijen, Marcel A. [1 ,4 ]
van Dam, Dick [1 ]
Cui, Yingchao [1 ]
Notten, Peter H. L. [3 ,5 ]
Haverkort, Jos E. M. [1 ]
Bakkers, Erik P. A. M. [1 ,6 ]
机构
[1] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
[2] BioSolar Cells, NL-6700 AB Wageningen, Netherlands
[3] Eindhoven Univ Technol, Dept Chem Engn & Chem, NL-5600 MB Eindhoven, Netherlands
[4] Philips Innovat Serv Eindhoven, NL-5656 AE Eindhoven, Netherlands
[5] Forschungszentrum Julich, IEK 9, D-52425 Julich, Germany
[6] Delft Univ Technol, Kavli Inst Nanosci Delft, NL-2628 CJ Delft, Netherlands
来源
NATURE COMMUNICATIONS | 2015年 / 6卷
关键词
HYDROGEN-PRODUCTION; SILICON; PHOTOCATHODES; ARRAYS; STABILITY; GAAS; SIZE;
D O I
10.1038/ncomms8824
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Photoelectrochemical hydrogen production from solar energy and water offers a clean and sustainable fuel option for the future. Planar III/V material systems have shown the highest efficiencies, but are expensive. By moving to the nanowire regime the demand on material quantity is reduced, and new materials can be uncovered, such as wurtzite gallium phosphide, featuring a direct bandgap. This is one of the few materials combining large solar light absorption and (close to) ideal band-edge positions for full water splitting. Here we report the photoelectrochemical reduction of water, on a p-type wurtzite gallium phosphide nanowire photocathode. By modifying geometry to reduce electrical resistance and enhance optical absorption, and modifying the surface with a multistep platinum deposition, high current densities and open circuit potentials were achieved. Our results demonstrate the capabilities of this material, even when used in such low quantities, as in nanowires.
引用
收藏
页数:7
相关论文
共 52 条
  • [1] Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode
    Abdi, Fatwa F.
    Han, Lihao
    Smets, Arno H. M.
    Zeman, Miro
    Dam, Bernard
    van de Krol, Roel
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [2] High efficiency photoelectrochemical water splitting and hydrogen generation using GaN nanowire photoelectrode
    AlOtaibi, B.
    Harati, M.
    Fan, S.
    Zhao, S.
    Nguyen, H. P. T.
    Kibria, M. G.
    Mi, Z.
    [J]. NANOTECHNOLOGY, 2013, 24 (17)
  • [3] Direct Band Gap Wurtzite Gallium Phosphide Nanowires
    Assali, S.
    Zardo, I.
    Plissard, S.
    Kriegner, D.
    Verheijen, M. A.
    Bauer, G.
    Meijerink, A.
    Belabbes, A.
    Bechstedt, F.
    Haverkort, J. E. M.
    Bakkers, E. P. A. M.
    [J]. NANO LETTERS, 2013, 13 (04) : 1559 - 1563
  • [4] Electronic bands of III-V semiconductor polytypes and their alignment
    Belabbes, Abderrezak
    Panse, Christian
    Furthmueller, Juergen
    Bechstedt, Friedhelm
    [J]. PHYSICAL REVIEW B, 2012, 86 (07)
  • [5] Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity
    Benck, Jesse D.
    Chen, Zhebo
    Kuritzky, Leah Y.
    Forman, Arnold J.
    Jaramillo, Thomas F.
    [J]. ACS CATALYSIS, 2012, 2 (09): : 1916 - 1923
  • [6] Photoelectrochemical Hydrogen Evolution Using Si Microwire Arrays
    Boettcher, Shannon W.
    Warren, Emily L.
    Putnam, Morgan C.
    Santori, Elizabeth A.
    Turner-Evans, Daniel
    Kelzenberg, Michael D.
    Walter, Michael G.
    McKone, James R.
    Brunschwig, Bruce S.
    Atwater, Harry A.
    Lewis, Nathan S.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (05) : 1216 - 1219
  • [7] Energy-Conversion Properties of Vapor-Liquid-Solid-Grown Silicon Wire-Array Photocathodes
    Boettcher, Shannon W.
    Spurgeon, Joshua M.
    Putnam, Morgan C.
    Warren, Emily L.
    Turner-Evans, Daniel B.
    Kelzenberg, Michael D.
    Maiolo, James R.
    Atwater, Harry A.
    Lewis, Nathan S.
    [J]. SCIENCE, 2010, 327 (5962) : 185 - 187
  • [8] WO3 and W2N nanowire arrays for photoelectrochemical hydrogen production
    Chakrapani, Vidhya
    Thangala, Jyothish
    Sunkara, Mahendra K.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (22) : 9050 - 9059
  • [9] A New Approach to Solar Hydrogen Production: a ZnO-ZnS Solid Solution Nanowire Array Photoanode
    Chen, Hao Ming
    Chen, Chih Kai
    Liu, Ru-Shi
    Wu, Ching-Chen
    Chang, Wen-Sheng
    Chen, Kuei-Hsien
    Chan, Ting-Shan
    Lee, Jyh-Fu
    Tsai, Din Ping
    [J]. ADVANCED ENERGY MATERIALS, 2011, 1 (05) : 742 - 747
  • [10] Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols
    Chen, Zhebo
    Jaramillo, Thomas F.
    Deutsch, Todd G.
    Kleiman-Shwarsctein, Alan
    Forman, Arnold J.
    Gaillard, Nicolas
    Garland, Roxanne
    Takanabe, Kazuhiro
    Heske, Clemens
    Sunkara, Mahendra
    McFarland, Eric W.
    Domen, Kazunari
    Miller, Eric L.
    Turner, John A.
    Dinh, Huyen N.
    [J]. JOURNAL OF MATERIALS RESEARCH, 2010, 25 (01) : 3 - 16