Enabling Superior Sodium Capture for Efficient Water Desalination by a Tubular Polyaniline Decorated with Prussian Blue Nanocrystals

被引:241
作者
Shi, Wenhui [1 ]
Liu, Xiaoyue [1 ]
Deng, Tianqi [2 ]
Huang, Shaozhuan [3 ]
Ding, Meng [3 ]
Miao, Xiaohe [4 ]
Zhu, Chongzhi [5 ,6 ]
Zhu, Yihan [5 ,6 ]
Liu, Wenxian [7 ,8 ]
Wu, Fangfang [7 ,8 ]
Gao, Congjie [1 ]
Yang, Shuo-Wang [2 ]
Yang, Hui Ying [3 ]
Shen, Jiangnan [1 ]
Cao, Xiehong [7 ,8 ]
机构
[1] Zhejiang Univ Technol, Coll Chem Engn, Ctr Membrane Separat & Water Sci & Technol, 18 Chaowang Rd, Hangzhou 310014, Peoples R China
[2] Agcy Sci Technol & Res, Inst High Performance Comp, 1 Fusionopolis Way,16-16 Connexis, Singapore 138632, Singapore
[3] Singapore Univ Technol & Design, Pillar Engn Prod Dev, 8 Somapah Rd, Singapore 487372, Singapore
[4] Westlake Univ, Instrumentat & Serv Ctr Phys Sci, 18 Shilongshan Rd, Hangzhou 310024, Peoples R China
[5] Zhejiang Univ Technol, State Key Lab Breeding Base Green Chem Synth Tech, Ctr Electron Microscopy, 18 Chaowang Rd, Hangzhou 310014, Peoples R China
[6] Zhejiang Univ Technol, Coll Chem Engn, 18 Chaowang Rd, Hangzhou 310014, Peoples R China
[7] Zhejiang Univ Technol, Coll Mat Sci & Engn, 18 Chaowang Rd, Hangzhou 310014, Peoples R China
[8] Zhejiang Univ Technol, State Key Lab Breeding Base Green Chem Synth Tech, 18 Chaowang Rd, Hangzhou 310014, Peoples R China
基金
中国国家自然科学基金;
关键词
capacitive deionization; Faradaic electrodes; polyaniline; Prussian blue; water desalination; CAPACITIVE DEIONIZATION; SEAWATER DESALINATION; FARADAIC REACTIONS; CARBON ELECTRODES; STORAGE ELECTRODE; ENERGY-STORAGE; PERFORMANCE; INTERCALATION; CATHODE; MEMBRANES;
D O I
10.1002/adma.201907404
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The application of electrochemical energy storage materials to capacitive deionization (CDI), a low-cost and energy-efficient technology for brackish water desalination, has recently been proven effective in solving problems of traditional CDI electrodes, i.e., low desalination capacity and incompatibility in high salinity water. However, Faradaic electrode materials suffer from slow salt removal rate and short lifetime, which restrict their practical usage. Herein, a simple strategy is demonstrated for a novel tubular-structured electrode, i.e., polyaniline (PANI)-tube-decorated with Prussian blue (PB) nanocrystals (PB/PANI composite). This composite successfully combines characteristics of two traditional Faradaic materials, and achieves high performance for CDI. Benefiting from unique structure and rationally designed composition, the obtained PB/PANI exhibits superior performance with a large desalination capacity (133.3 mg g(-1)at 100 mA g(-1)), and ultrahigh salt-removal rate (0.49 mg g(-1)s(-1)at 2 A g(-1)). The synergistic effect, interfacial enhancement, and desalination mechanism of PB/PANI are also revealed through in situ characterization and theoretical calculations. Particularly, a concept for recovery of the energy applied to CDI process is demonstrated. This work provides a facile strategy for design of PB-based composites, which motivates the development of advanced materials toward high-performance CDI applications.
引用
收藏
页数:9
相关论文
共 94 条
[1]   Exceptional Water Desalination Performance with Anion-Selective Electrodes [J].
Arulrajan, Antony C. ;
Ramasamy, Deepika L. ;
Sillanpaa, Mika ;
van der Wal, Albert ;
Biesheuvel, P. Maarten ;
Porada, Slawomir ;
Dykstra, Jouke E. .
ADVANCED MATERIALS, 2019, 31 (10)
[2]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[3]   Porous Cryo-Dried MXene for Efficient Capacitive Deionization [J].
Bao, Weizhai ;
Tang, Xiao ;
Guo, Xin ;
Choi, Sinho ;
Wang, Chengyin ;
Gogotsi, Yury ;
Wang, Guoxiu .
JOULE, 2018, 2 (04) :778-787
[4]   High salt capacity and high removal rate capacitive deionization enabled by hierarchical porous carbons [J].
Baroud, Turki N. ;
Giannelis, Emmanuel P. .
CARBON, 2018, 139 :614-625
[5]   Tunnel structured manganese oxide nanowires as redox active electrodes for hybrid capacitive deionization [J].
Byles, Bryan W. ;
Cullen, David A. ;
More, Karren L. ;
Pomerantseva, Ekaterina .
NANO ENERGY, 2018, 44 :476-488
[6]   Na3V2(PO4)3@C as Faradaic Electrodes in Capacitive Deionization for High-Performance Desalination [J].
Cao, Jianglin ;
Wang, Ying ;
Wang, Lei ;
Yu, Fei ;
Ma, Jie .
NANO LETTERS, 2019, 19 (02) :823-828
[7]   Pseudocapacitive Na-Ion Storage Boosts High Rate and Areal Capacity of Self-Branched 2D Layered Metal Chalcogenide Nanoarrays [J].
Chao, Dongliang ;
Liang, Pei ;
Chen, Zhen ;
Bai, Linyi ;
Shen, He ;
Liu, Xiaoxu ;
Xia, Xinhui ;
Zhao, Yanli ;
Savilov, Serguei V. ;
Lin, Jianyi ;
Shen, Ze Xiang .
ACS NANO, 2016, 10 (11) :10211-10219
[8]   Dual-ions electrochemical deionization: a desalination generator [J].
Chen, Fuming ;
Huang, Yinxi ;
Guo, Lu ;
Sun, Linfeng ;
Wang, Ye ;
Yang, Hui Ying .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (10) :2081-2089
[9]   A novel three-dimensional desalination system utilizing honeycomb-shaped lattice structures for flow-electrode capacitive deionization [J].
Cho, Younghyun ;
Lee, Ki Sook ;
Yang, SeungCheol ;
Choi, Jiyeon ;
Park, Hong-ran ;
Kim, Dong Kook .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (08) :1746-1750
[10]   Multilayer Nanoporous Graphene Membranes for Water Desalination [J].
Cohen-Tanugi, David ;
Lin, Li-Chiang ;
Grossman, Jeffrey C. .
NANO LETTERS, 2016, 16 (02) :1027-1033