A fractional order hyperchaotic system derived from a Liu system and its circuit realization

被引:25
作者
Han Qiang [1 ,2 ]
Liu Chong-Xin [1 ,2 ]
Sun Lei [1 ,2 ]
Zhu Da-Rui [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Elect Insulat & Power Equipment, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Elect Engn, Xian 710049, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
fractional order hyperchaotic system; numerical simulation; circuit experiment;
D O I
10.1088/1674-1056/22/2/020502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we propose a novel four-dimensional fractional order hyperchaotic system derived from a Liu system. Electronics workbench (EWB) and Matlab simulations show the dynamical behavior of the proposed four-dimensional fractional order hyperchaotic system. Finally, after separately using EWB and Matlab, an electronic circuit is designed to realize the novel four-dimensional fractional order hyperchaotic system and the experimental circuit results are obtained which are identical to software simulations.
引用
收藏
页数:6
相关论文
共 11 条
[1]   Chaos in fractional-order autonomous nonlinear systems [J].
Ahmad, WM ;
Sprott, JC .
CHAOS SOLITONS & FRACTALS, 2003, 16 (02) :339-351
[2]   Analysis of fractional differential equations [J].
Diethelm, K ;
Ford, NJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 265 (02) :229-248
[3]  
Hasler M, 1993, P INT S NONL THEOR A, P87
[4]   A hyperchaotic system and its fractional order circuit simulation [J].
Liu Chong-Xin .
ACTA PHYSICA SINICA, 2007, 56 (12) :6865-6873
[5]  
Liu CX, 2007, CHINESE PHYS, V16, P3279, DOI 10.1088/1009-1963/16/11/022
[6]   A new chaotic attractor [J].
Liu, CX ;
Liu, T ;
Liu, L ;
Liu, K .
CHAOS SOLITONS & FRACTALS, 2004, 22 (05) :1031-1038
[7]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[8]  
2
[9]   Fractional order control of a hexapod robot [J].
Silva, MF ;
Machado, JAT ;
Lopes, AM .
NONLINEAR DYNAMICS, 2004, 38 (1-4) :417-433
[10]  
Wang FQ, 2006, CHINESE PHYS, V15, P963, DOI 10.1088/1009-1963/15/5/016