Replacing Copper Interconnects with Graphene at a 7-nm Node

被引:0
|
作者
Wang, Ning C. [1 ,2 ]
Sinha, Saurabh [2 ]
Cline, Brian [2 ]
English, Chris D. [1 ]
Yeric, Greg [2 ]
Pop, Eric [1 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] ARM Inc, Austin, TX 78735 USA
来源
2017 IEEE INTERNATIONAL INTERCONNECT TECHNOLOGY CONFERENCE (IITC) | 2017年
关键词
graphene; scaled interconnects; design technology co-optimization; size-effect; coupling capacitance;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We examine graphene for interconnects within a 7-nm FinFET technology. Multiple scenarios considered alter dimensions and/or materials to reflect realistic graphene interconnect fabrication. Replacement is restricted up to the 3rd BEOL metal layer (M3) as graphene is advantageous over copper in terms of resistivity only for line widths < 30 nm. Initial standard-cell level analysis is extended to benchmarking of a commercial 32-bit processor for the most promising graphene interconnect scenario: horizontally oriented graphene interconnects with bulk resistivity (rho(0)) of 1.5 mu Omega-cm and stack height (h) of 20 nm. Full-chip energy-delay-product (EDP) improves up to similar to 8% as the shorter graphene stack height reduces parasitic capacitances. We also consider the impact of graphene contact resistance on via resistances: although via resistance increases as much as 20x, low performance targets still demonstrate EDP improvement, suggesting further potential improvement from electronic design automation (EDA) tool optimization.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Resistivity of copper interconnects beyond the 7 nm node
    Pyzyna, A.
    Bruce, R.
    Lofaro, M.
    Tsai, H.
    Witt, C.
    Gignac, L.
    Brink, M.
    Guillorn, M.
    Fritz, G.
    Miyazoe, H.
    Klaus, D.
    Joseph, E.
    Rodbell, K. P.
    Lavoie, C.
    Park, D. -G.
    2015 SYMPOSIUM ON VLSI TECHNOLOGY (VLSI TECHNOLOGY), 2015,
  • [2] Latchup Vulnerability at the 7-nm FinFET Node
    Pieper, N. J.
    Xiong, Y.
    Feeley, A.
    Ball, D. R.
    Bhuva, B. L.
    2022 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM (IRPS), 2022,
  • [3] Vertical Slit FET at 7-nm Node and Beyond
    Yang, Ping-Lin
    Hook, Terence B.
    Oldiges, Philip J.
    Doris, Bruce B.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2016, 63 (08) : 3327 - 3334
  • [4] Limitations on Lateral Nanowire Scaling Beyond 7-nm Node
    Das, Uttam Kumar
    Garcia Bardon, M.
    Jang, D.
    Eneman, G.
    Schuddinck, P.
    Yakimets, D.
    Raghavan, P.
    Groeseneken, Guido
    IEEE ELECTRON DEVICE LETTERS, 2017, 38 (01) : 9 - 11
  • [5] Optimisation of SRAM cell in 7-nm node by response surface method
    Yan-Yan, Ding
    Zhang, Guangjun
    Jiang, Yanfeng
    INTERNATIONAL JOURNAL OF ELECTRONICS, 2022, 109 (08) : 1307 - 1323
  • [6] Single-Event Latchup Vulnerability at the 7-nm FinFET Node
    Pieper, N. J.
    Xiong, Y.
    Feeley, A.
    Ball, D. R.
    Bhuva, B. L.
    2022 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM (IRPS), 2022,
  • [7] Thermal Neutron Induced Soft Errors in 7-nm Bulk FinFET Node
    Xu, L.
    Cao, J.
    Brockman, J.
    Cazzaniga, C.
    Frost, C.
    Wen, S-J
    Lung, R.
    Bhuva, B. L.
    2020 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM (IRPS), 2020,
  • [8] Analysis of multi-e-beam lithography for cutting layers at 7-nm node
    Zhao, Lijun
    Wei, Yayi
    Ye, Tianchun
    JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS, 2016, 15 (04):
  • [9] Frequency, LET, and Supply Voltage Dependence of Logic Soft Errors at the 7-nm Node
    Xiong, Y.
    Feeley, A.
    Massengill, L. W.
    Bhuva, B. L.
    Wen, S-J
    Fung, R.
    2021 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM (IRPS), 2021,
  • [10] Performance Evaluation of 7-nm Node Negative Capacitance FinFET-Based SRAM
    Dutta, Tapas
    Pahwa, Girish
    Trivedi, Amit Ranjan
    Sinha, Saurabh
    Agarwal, Amit
    Chauhan, Yogesh Singh
    IEEE ELECTRON DEVICE LETTERS, 2017, 38 (08) : 1161 - 1164