Computing the Mixed Metric Dimension of a Generalized Petersen GraphP(n, 2)

被引:20
作者
Raza, Hassan [1 ]
Ji, Ying [1 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Business, Shanghai, Peoples R China
基金
美国国家科学基金会;
关键词
mixed metric dimension; metric dimension; edge metric dimension; generalized Petersen graph; exact values;
D O I
10.3389/fphy.2020.00211
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let Gamma = (V, E) be a connected graph. A vertexi is an element of Vrecognizes two elements (vertices or edges)j, k is an element of E boolean AND V, ifd(Gamma)(i, j) not equal d(Gamma)(i, k). A setSof vertices in a connected graph Gamma is a mixed metric generator for Gamma if every two distinct elements (vertices or edges) of Gamma are recognized by some vertex ofS. The smallest cardinality of a mixed metric generator for Gamma is called the mixed metric dimension and is denoted by beta(m). In this paper, the mixed metric dimension of a generalized Petersen graphP(n, 2) is calculated. We established that a generalized Petersen graphP(n, 2) has a mixed metric dimension equivalent to 4 forn equivalent to 0, 2(mod4), and, forn equivalent to 1, 3(mod4), the mixed metric dimension is 5. We thus determine that each graph of the family of a generalized Petersen graphP(n, 2) has a constant mixed metric dimension. 2010 Mathematics Subject Classification:05C12, 05C90
引用
收藏
页数:9
相关论文
共 31 条
[1]   On the metric dimension of cartesian products of graphs [J].
Caceres, Jose ;
Hernando, Carmen ;
Mora, Merce ;
Pelayo, Ignacio M. ;
Puertas, Maria L. ;
Seara, Carlos ;
Wood, David R. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (02) :423-441
[2]  
Chartrand V., 2003, Math Bohem, V128, P379, DOI DOI 10.21136/MB.2003.134003
[3]   Edge Metric Dimension of Some Generalized Petersen Graphs [J].
Filipovic, Vladimir ;
Kartelj, Aleksandar ;
Kratica, Jozef .
RESULTS IN MATHEMATICS, 2019, 74 (04)
[4]  
Harary F., 1976, ARS COMBINATORIA, V2, P191
[5]   On the Metric Dimension of Generalized Petersen Multigraphs [J].
Imran, Muhammad ;
Siddiqui, Muhammad Kamran ;
Naeem, Rishi .
IEEE ACCESS, 2018, 6 :74328-74338
[6]  
Imran M, 2014, ARS COMBINATORIA, V117, P113
[7]  
Javaid I, 2008, UTILITAS MATHEMATICA, V75, P21
[8]   Uniquely identifying the edges of a graph: The edge metric dimension [J].
Kelenc, Aleksander ;
Tratnik, Niko ;
Yero, Ismael G. .
DISCRETE APPLIED MATHEMATICS, 2018, 251 :204-220
[9]   Mixed metric dimension of graphs [J].
Kelenc, Aleksander ;
Kuziak, Dorota ;
Taranenko, Andrei ;
Yero, Ismael G. .
APPLIED MATHEMATICS AND COMPUTATION, 2017, 314 :429-438
[10]   Landmarks in graphs [J].
Khuller, S ;
Raghavachari, B ;
Rosenfeld, A .
DISCRETE APPLIED MATHEMATICS, 1996, 70 (03) :217-229