A Lifting Scheme of Symmetric-antisymmetric Multiwavelet Transform for Image Coding

被引:3
作者
Chen, Jiazhong [1 ,2 ]
Ju, Zengwei [1 ]
Cao, Hua [3 ]
Xie, Ping [4 ]
Chen, Changnian [1 ]
Li, Rong [1 ]
Xia, Tao [1 ]
Qin, Leihua [1 ]
机构
[1] Huazhong Univ Sci & Technol, Coll Comp Sci & Technol, Wuhan 430074, Peoples R China
[2] Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Coll Software, Wuhan 430074, Peoples R China
[4] China Mobile Hubei Branch, Wuhan 430023, Peoples R China
关键词
Multiwavelet transform; Wavelet lifting; Image compression; ORTHOGONAL MULTIWAVELETS; COMPRESSION; BANKS;
D O I
10.1007/s00034-012-9404-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A symmetric-antisymmetric (SA) multiwavelet lifting factorization of matrix filter banks is presented as an extension of Sweldens' traditional scalar wavelet lifting scheme. A prefilter absorbed (PA) multiwavelet lifting factorization is also presented to reduce the redundant computations in prefiltering. Then an algorithm of multiwavelet lifting is designed and used for signal decomposition. The experimental results show this lifting scheme can achieve lower complexity while preserve high quality for image coding.
引用
收藏
页码:1887 / 1900
页数:14
相关论文
共 14 条
[1]   The application of symmetric orthogonal multiwavelets and prefilter technique for image compression [J].
Chen, Jiazhong ;
Xun, Ouyang ;
Zheng, Wu ;
Xu, Jun ;
Zhou, Jingli ;
Yu, Shengsheng .
MULTIMEDIA TOOLS AND APPLICATIONS, 2006, 29 (02) :175-189
[2]   M-channel lifting factorization of perfect reconstruction filter banks and reversible M-band wavelet transforms [J].
Chen, YJ ;
Amaratunga, KS .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2003, 50 (12) :963-976
[3]   A study of orthonormal multi-wavelets [J].
Chui, CK ;
Lian, JA .
APPLIED NUMERICAL MATHEMATICS, 1996, 20 (03) :273-298
[4]   Image compression through embedded multiwavelet transform coding [J].
Cotronei, M ;
Lazzaro, D ;
Montefusco, LB ;
Puccio, L .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (02) :184-189
[5]   Factoring wavelet transforms into lifting steps [J].
Daubechies, I ;
Sweldens, W .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1998, 4 (03) :247-269
[6]   Adaptive directional lifting-based wavelet transform for image coding [J].
Ding, Wenpeng ;
Wu, Feng ;
Wu, Xiaolin ;
Li, Shipeng ;
Li, Houqiang .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (02) :416-427
[7]   On minimal lattice factorizations of symmetric-antisymmetric multifilterbanks [J].
Gan, L ;
Ma, KK .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (02) :606-621
[8]   Context- and HVS-based multiwavelet image coding using SPIHT framework [J].
He, XC ;
Yu, SS ;
Zhou, JL .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2005, 24 (02) :117-134
[9]   Orthogonal symmetric prefilter banks for discrete multiwavelet transforms [J].
Hsung, TC ;
Lun, DPK ;
Ho, KC .
IEEE SIGNAL PROCESSING LETTERS, 2006, 13 (03) :145-148
[10]   Orthogonal multiwavelets with optimum time-frequency resolution [J].
Jiang, QT .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (04) :830-844