Quantum Bundle Description of Quantum Projective Spaces

被引:14
作者
Buachalla, Reamonn O. [1 ]
机构
[1] Univ London, Sch Math Sci, London E1 4NS, England
关键词
DIFFERENTIAL-CALCULUS; SPIN GEOMETRY; FLAG; LAPLACIANS; OPERATORS;
D O I
10.1007/s00220-012-1577-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We realise Heckenberger and Kolb's canonical calculus on quantum projective (N - 1)-space C (q) [C p (N-1)] as the restriction of a distinguished quotient of the standard bicovariant calculus for the quantum special unitary group C (q) [SU (N) ]. We introduce a calculus on the quantum sphere C (q) [S (2N-1)] in the same way. With respect to these choices of calculi, we present C (q) [C p (N-1)] as the base space of two different quantum principal bundles, one with total space C (q) [SU (N) ], and the other with total space C (q) [S (2N-1)]. We go on to give C (q) [C p (N-1)] the structure of a quantum framed manifold. More specifically, we describe the module of one-forms of Heckenberger and Kolb's calculus as an associated vector bundle to the principal bundle with total space C (q) [SU (N) ]. Finally, we construct strong connections for both bundles.
引用
收藏
页码:345 / 373
页数:29
相关论文
共 50 条
[31]   Extracting the Field Theory Description of a Quantum Many-Body System from Experimental Data [J].
Zache, Torsten, V ;
Schweigler, Thomas ;
Erne, Sebastian ;
Schmiedmayer, Joerg ;
Berges, Juergen .
PHYSICAL REVIEW X, 2020, 10 (01)
[32]   EXAMPLES OF HODGE LAPLACIANS ON QUANTUM SPHERES [J].
Zampini, Alessandro .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2012, 9 (02)
[33]   Symplectic transformations and quantum tomography in finite quantum systems [J].
Vourdas, A. ;
Banderier, C. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (04)
[34]   QUANTUM TANAKA FORMULA IN TERMS OF QUANTUM BROWNIAN MOTION [J].
Zhou, Yulan ;
Wang, Caishi .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 83 (03) :401-412
[35]   Markovian dynamics for a quantum/classical system and quantum trajectories [J].
Barchielli, Alberto .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (31)
[36]   Quantum noise and entanglement generated by a local quantum quench [J].
Hsu, Benjamin ;
Grosfeld, Eytan ;
Fradkin, Eduardo .
PHYSICAL REVIEW B, 2009, 80 (23)
[37]   Quantum stochastic calculus associated with quadratic quantum noises [J].
Ji, Un Cig ;
Sinha, Kalyan B. .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (02)
[38]   Quantum Relations [J].
Weaver, Nik .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 215 (1010) :81-+
[39]   Quantum λ-potentials associated to quantum Ornstein-Uhlenbeck semigroups [J].
Rguigui, Hafedh .
CHAOS SOLITONS & FRACTALS, 2015, 73 :80-89
[40]   Quantum fidelity for degenerate ground states in quantum phase transitions [J].
Su, Yao Heng ;
Hu, Bing-Quan ;
Li, Sheng-Hao ;
Cho, Sam Young .
PHYSICAL REVIEW E, 2013, 88 (03)