Quantum Bundle Description of Quantum Projective Spaces

被引:14
作者
Buachalla, Reamonn O. [1 ]
机构
[1] Univ London, Sch Math Sci, London E1 4NS, England
关键词
DIFFERENTIAL-CALCULUS; SPIN GEOMETRY; FLAG; LAPLACIANS; OPERATORS;
D O I
10.1007/s00220-012-1577-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We realise Heckenberger and Kolb's canonical calculus on quantum projective (N - 1)-space C (q) [C p (N-1)] as the restriction of a distinguished quotient of the standard bicovariant calculus for the quantum special unitary group C (q) [SU (N) ]. We introduce a calculus on the quantum sphere C (q) [S (2N-1)] in the same way. With respect to these choices of calculi, we present C (q) [C p (N-1)] as the base space of two different quantum principal bundles, one with total space C (q) [SU (N) ], and the other with total space C (q) [S (2N-1)]. We go on to give C (q) [C p (N-1)] the structure of a quantum framed manifold. More specifically, we describe the module of one-forms of Heckenberger and Kolb's calculus as an associated vector bundle to the principal bundle with total space C (q) [SU (N) ]. Finally, we construct strong connections for both bundles.
引用
收藏
页码:345 / 373
页数:29
相关论文
共 50 条
[21]   A quantum shuffle approach to quantum determinants [J].
Jian, Run-Qiang .
LETTERS IN MATHEMATICAL PHYSICS, 2022, 112 (06)
[22]   Localized Quantum Chemistry on Quantum Computers [J].
Otten, Matthew ;
Hermes, Matthew R. ;
Pandharkar, Riddhish ;
Alexeev, Yuri ;
Gray, Stephen K. ;
Gagliardi, Laura .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (12) :7205-7217
[23]   Quantum Koszul formula on quantum spacetime [J].
Majid, Shahn ;
Williams, Liam .
JOURNAL OF GEOMETRY AND PHYSICS, 2018, 129 :41-69
[24]   Explicit formulas of the heat kernel on the quaternionic projective spaces [J].
Hafoud, Ali ;
Ghanmi, Allal .
ADVANCES IN PURE AND APPLIED MATHEMATICS, 2022, 13 (02) :1-11
[25]   Quantum-Classical Correspondence on Associated Vector Bundles Over Locally Symmetric Spaces [J].
Kuester, Benjamin ;
Weich, Tobias .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (11) :8225-8296
[26]   A Hilbert bundle description of differential K-theory [J].
Gorokhovsky, Alexander ;
Lott, John .
ADVANCES IN MATHEMATICS, 2018, 328 :661-712
[27]   Quantum ergodicity for large equilateral quantum graphs [J].
Ingremeau, Maxime ;
Sabri, Mostafa ;
Winn, Brian .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2020, 101 (01) :82-109
[28]   Quantum Zeno Effect in Open Quantum Systems [J].
Becker, Simon ;
Datta, Nilanjana ;
Salzmann, Robert .
ANNALES HENRI POINCARE, 2021, 22 (11) :3795-3840
[29]   Quantum spin chains with quantum group symmetry [J].
Fannes, M ;
Nachtergaele, B ;
Werner, RF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 174 (03) :477-507
[30]   Quantum Magnetism from Low-Dimensional Quantum Ising Models with Quantum Integrability [J].
Gao, Yunjing ;
Wu, Jianda .
CHINESE PHYSICS LETTERS, 2025, 42 (04)