Quantum Bundle Description of Quantum Projective Spaces

被引:13
|
作者
Buachalla, Reamonn O. [1 ]
机构
[1] Univ London, Sch Math Sci, London E1 4NS, England
关键词
DIFFERENTIAL-CALCULUS; SPIN GEOMETRY; FLAG; LAPLACIANS; OPERATORS;
D O I
10.1007/s00220-012-1577-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We realise Heckenberger and Kolb's canonical calculus on quantum projective (N - 1)-space C (q) [C p (N-1)] as the restriction of a distinguished quotient of the standard bicovariant calculus for the quantum special unitary group C (q) [SU (N) ]. We introduce a calculus on the quantum sphere C (q) [S (2N-1)] in the same way. With respect to these choices of calculi, we present C (q) [C p (N-1)] as the base space of two different quantum principal bundles, one with total space C (q) [SU (N) ], and the other with total space C (q) [S (2N-1)]. We go on to give C (q) [C p (N-1)] the structure of a quantum framed manifold. More specifically, we describe the module of one-forms of Heckenberger and Kolb's calculus as an associated vector bundle to the principal bundle with total space C (q) [SU (N) ]. Finally, we construct strong connections for both bundles.
引用
收藏
页码:345 / 373
页数:29
相关论文
共 50 条
  • [1] Vector bundles over multipullback quantum complex projective spaces
    Sheu, Albert Jeu-Liang
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2021, 15 (01) : 305 - 345
  • [2] Projective Modules Over Quantum Projective Line
    Sheu, Albert Jeu-Liang
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2017, 28 (03)
  • [3] Holomorphic Structures on the Quantum Projective Line
    Khalkhali, Masoud
    Landi, Giovanni
    van Suijlekom, Walter Daniel
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (04) : 851 - 884
  • [4] A DOLBEAULT-DIRAC SPECTRAL TRIPLE FOR QUANTUM PROJECTIVE SPACE
    Das, Biswarup
    Buachalla, Reamonn O.
    Somberg, Petr
    DOCUMENTA MATHEMATICA, 2020, 25 : 1079 - 1157
  • [5] Description of GL3-orbits on the quadruple projective spaces
    Shimamoto, Naoya
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2023, 34 (09)
  • [6] Operator representations on quantum spaces
    C. Bauer
    H. Wachter
    The European Physical Journal C - Particles and Fields, 2003, 31 : 261 - 275
  • [7] Function spaces on quantum tori
    Xiong, Xiao
    Xu, Quanhua
    Yin, Zhi
    COMPTES RENDUS MATHEMATIQUE, 2015, 353 (08) : 729 - 734
  • [8] Differential Calculus on Quantum Homogeneous Spaces
    István Heckenberger
    Stefan Kolb
    Letters in Mathematical Physics, 2003, 63 : 255 - 264
  • [9] Quantum Euclidean spaces with noncommutative derivatives
    Gao, Li
    Junge, Marius
    McDonald, Edward
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2022, 16 (01) : 153 - 213
  • [10] Differential calculus on quantum homogeneous spaces
    Heckenberger, I
    Kolb, S
    LETTERS IN MATHEMATICAL PHYSICS, 2003, 63 (03) : 255 - 264