L-effect Algebras

被引:8
作者
Rump, Wolfgang [1 ]
Zhang, Xia [2 ]
机构
[1] Univ Stuttgart, Inst Algebra & Number Theory, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
[2] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
关键词
Effect algebra; L-algebra; Right; PSEUDOEFFECT ALGEBRAS; GARSIDE GROUPS; QUANTUM; DECOMPOSITION; INTERVALS; LOGIC;
D O I
10.1007/s11225-019-09873-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
L-effect algebras are introduced as a class ofL-algebras which specialize to all known generalizations of effect algebras with a-group, the structure group of the correspondingL-algebra. A block theory for generalized lattice effect algebras, and the existence of a generalized OML as the subalgebra of sharp elements are derived from this description.
引用
收藏
页码:725 / 750
页数:26
相关论文
共 59 条
[1]   Interval and scale effect algebras [J].
Bennett, MK ;
Foulis, DJ .
ADVANCES IN APPLIED MATHEMATICS, 1997, 19 (02) :200-215
[2]   The logic of quantum mechanics [J].
Birkhoff, G ;
von Neumann, J .
ANNALS OF MATHEMATICS, 1936, 37 :823-843
[3]   RIGHT-COMPLEMENTARY SEMIGROUPS - AXIOMS, POLYNOMIALS, CONGRUENCES [J].
BOSBACH, B .
MATHEMATISCHE ZEITSCHRIFT, 1972, 124 (04) :273-&
[4]   ARTIN GROUPS AND COXETER GROUPS [J].
BRIESKORN, E ;
SAITO, K .
INVENTIONES MATHEMATICAE, 1972, 17 (04) :245-+
[5]  
Chang C.C., 1958, T AM MATH SOC, V88, P467, DOI 10.1090/S0002-9947-1958-0094302-9
[6]  
Chang C.C., 1959, Transactions of the American Mathematical Society, V93, P74, DOI [10.2307/1993423 (cit. on p. 146, DOI 10.2307/1993423(CIT.ONP.146]
[7]  
CHOVANEC F, 2007, HDB QUANTUM LOGIC QU, P367
[8]  
Darnel M.R., 1995, PURE APPL MATH, V187
[9]  
Dehornoy P, 2015, EMS TRACTS MATH, V22, P1, DOI 10.4171/139
[10]   Garside groups [J].
Dehornoy, P .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2002, 35 (02) :267-306