A generalized action for (2+1)-dimensional Chern-Simons gravity

被引:52
作者
Diaz, J. [1 ]
Fierro, O. [2 ]
Izaurieta, F. [3 ]
Merino, N. [2 ,4 ]
Rodriguez, E. [3 ]
Salgado, P. [2 ]
Valdivia, O. [2 ]
机构
[1] Univ Arturo Prat, Dept Fis & Matemat, Iquique, Chile
[2] Univ Concepcion, Dept Fis, Concepcion, Chile
[3] Univ Santisima Concepcion, Dept Matemat & Fis Aplicadas, Concepcion, Chile
[4] Politecn Torino, Dipartimento Fis, I-10129 Turin, Italy
关键词
DIMENSIONS;
D O I
10.1088/1751-8113/45/25/255207
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the so-called semi-simple extended Poincare (SSEP) algebra in D dimensions can be obtained from the anti-de Sitter algebra so (D - 1, 2) by means of the S-expansion procedure with an appropriate semigroup S. A general prescription is given for computing Casimir operators for S-expanded algebras, and the method is exemplified for the SSEP algebra. The S-expansion method also allows us to extract the corresponding invariant tensor for the SSEP algebra, which is a key ingredient in the construction of a generalized action for Chern-Simons gravity in (2 + 1) dimensions.
引用
收藏
页数:14
相关论文
共 11 条
[1]  
Caroca R, 2011, SEMIGROUP FORU UNPUB
[2]   TOPOLOGICAL GRAVITY AND SUPERGRAVITY IN VARIOUS DIMENSIONS [J].
CHAMSEDDINE, AH .
NUCLEAR PHYSICS B, 1990, 346 (01) :213-234
[3]   TOPOLOGICAL GAUGE-THEORY OF GRAVITY IN 5 AND ALL ODD DIMENSIONS [J].
CHAMSEDDINE, AH .
PHYSICS LETTERS B, 1989, 233 (3-4) :291-294
[4]  
Duplij SA, 2005, NUCL PART FIELDS, V27, P12
[5]   Dual formulation of the Lie algebra S-expansion procedure [J].
Izaurieta, F. ;
Perez, A. ;
Rodriguez, E. ;
Salgado, P. .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (07)
[6]   Expanding lie (super)algebras through Abelian semigroups [J].
Izaurieta, Fernando ;
Rodriguez, Eduardo ;
Salgado, Patricio .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (12)
[7]   TOPOLOGICAL GAUGE-MODEL OF GRAVITY WITH TORSION [J].
MIELKE, EW ;
BAEKLER, P .
PHYSICS LETTERS A, 1991, 156 (7-8) :399-403
[8]   Semi-Simple Extension of the (Super) Poincare Algebra [J].
Soroka, Dmitrij V. ;
Soroka, Vyacheslav A. .
ADVANCES IN HIGH ENERGY PHYSICS, 2009, 2009
[9]   Tensor extension of the Poincare algebra [J].
Soroka, DV ;
Soroka, VA .
PHYSICS LETTERS B, 2005, 607 (3-4) :302-305
[10]  
Soroka DV, 2010, ARXIVHEPTH10043194V2