Sign -changing solutions for nonlinear Schr?dinger?Poisson systems with subquadratic or quadratic growth at infinity

被引:17
作者
Gu, Lihua [1 ,2 ]
Jin, Hua [3 ]
Zhang, Jianjun [1 ]
机构
[1] Chongqing Jiaotong Univ, Coll Math & Stat, Chongqing 400074, Peoples R China
[2] Chongqing City Management Coll, Chongqing 401331, Peoples R China
[3] China Univ Min & Technol, Coll Sci, Xuzhou 221116, Jiangsu, Peoples R China
关键词
SCHRODINGER-POISSON SYSTEM; GROUND-STATE SOLUTIONS; NODAL SOLUTIONS; SOLITARY WAVES; BOUND-STATES; EXISTENCE; EQUATION;
D O I
10.1016/j.na.2020.111897
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is dedicated to investigating the existence of sign-changing solutions to the following Schrödinger–Poisson system −Δu+V(x)u+λϕu=f(u)inR3,−Δϕ=u2inR3,where λ>0 and f is subquadratic or quadratic at infinity. By using the method of invariant sets of descending flow, we prove that the problem above admits multiple radial sign-changing solutions in the subquadratic case as λ small. As for the quadratic case, by virtue of a perturbation argument, we show that this problem admits at least one sign-changing solution as λ small. © 2020 Elsevier Ltd
引用
收藏
页数:16
相关论文
共 65 条
[1]   Existence of least energy nodal solution for a Schrodinger-Poisson system in bounded domains [J].
Alves, Claudianor O. ;
Souto, Marco A. S. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06) :1153-1166
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]   Multiple bound states for the Schrodinger-Poisson problem [J].
Ambrosetti, Antonio ;
Ruiz, David .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (03) :391-404
[4]   On Schrodinger-Poisson Systems [J].
Ambrosetti, Antonio .
MILAN JOURNAL OF MATHEMATICS, 2008, 76 (01) :257-274
[5]  
[Anonymous], 1997, Graduate Studies in Mathematics
[6]  
[Anonymous], 2001, Commun. Contemp. Math., DOI DOI 10.1142/S0219199701000494
[7]  
[Anonymous], J CLIN INNOV CARDIOL, DOI [DOI 10.1186/s12934-016-0439-1, DOI 10.1186/S12904-016]
[8]   Ground state solutions for the nonlinear Schrodinger-Maxwell equations [J].
Azzollini, A. ;
Pomponio, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :90-108
[9]   On the Schrodinger-Maxwell equations under the effect of a general nonlinear term [J].
Azzollini, A. ;
d'Avenia, P. ;
Pomponio, A. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (02) :779-791
[10]   Nodal solutions of a p-Laplacian equation [J].
Bartsch, T ;
Liu, ZL ;
Weth, T .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 91 :129-152