Effects of temperature and particles volume concentration on the thermophysical properties and the rheological behavior of CuO/MgO/TiO2 aqueous ternary hybrid nanofluid: Experimental investigation

被引:139
作者
Mousavi, S. M. [1 ]
Esmaeilzadeh, F. [1 ]
Wang, X. P. [2 ]
机构
[1] Shiraz Univ, Adv Res Grp Gas Condensate Recovery, Enhanced Oil & Gas Recovery Inst, Dept Chem & Petr Engn,Sch Chem & Petr Engn, Shiraz 7134851154, Iran
[2] Xi An Jiao Tong Univ, Minist Educ, Key Lab Thermofluid Sci & Engn, Xian 710049, Shaanxi, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Ternary hybrid nanofluids; Thermal conductivity; Viscosity; Specific heat capacity; Volume concentration; THERMAL-CONDUCTIVITY MEASUREMENT; HEAT-TRANSFER; CARBON NANOTUBES; PHYSICAL PROPERTIES; ETHYLENE-GLYCOL; FRICTION FACTOR; STABILITY; VISCOSITY; WATER; ENHANCEMENT;
D O I
10.1007/s10973-019-08006-0
中图分类号
O414.1 [热力学];
学科分类号
摘要
In the present study, the impacts of nanoparticles volume concentration and temperature on the thermophysical properties and the rheological behavior of water-based CuO/MgO/TiO2 ternary hybrid nanofluids were elucidated. Five types of CuO/MgO/TiO2 aqueous THNFs (ternary hybrid nanofluids) including A (33.4 mass% CuO/33.3 mass% MgO/33.3 mass% TiO2), B (50 mass% CuO/25 mass% MgO/25 mass% TiO2), C (60 mass% CuO/30 mass% MgO/10 mass% TiO2), D (25 mass% CuO/50 mass% MgO/25 mass% TiO2) and E (25 mass% CuO/25 mass% MgO/50 mass% TiO2) were fabricated. All experiments were performed under the temperature range of 15-60 degrees C in the solid volume concentration range of 0.1-0.5%. The experimental results demonstrated that the rheological and the thermophysical properties of THNFs depend not only on the nanoparticles volume concentration, but also on the temperature of THNFs. All the THNFs demonstrated Newtonian behavior. The dynamic viscosity and the thermal conductivity of THNFs increased with enhancing solid particles volume concentration and temperature. The highest increment in thermal conductivity as compared to distilled water was obtained for the C type of THNFs at 0.5 solid vol% in 50 degrees C. The specific heat capacity of THNFs first decreased up to 35 degrees C and then increased with raising temperature. The highest reduction of specific heat capacity of THNFs was found for the C type of THNFs. The surface tension of B and C types of THNFs increased with the particles volume concentration enhancement. In the cases of low particles volume, the surface tension of THNFs was lower than that of the distilled water, for a concentration of the nanoparticles of 1.0%. Four new correlations were developed to predict the viscosity, thermal conductivity, specific heat capacity and density of the THNFs. All the proposed correlations had a satisfactory accuracy of +/- 1%.
引用
收藏
页码:879 / 901
页数:23
相关论文
共 58 条
[1]   Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids [J].
Abareshi, Maryam ;
Goharshadi, Elaheh K. ;
Zebarjad, Seyed Mojtaba ;
Fadafan, Hassan Khandan ;
Youssefi, Abbas .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2010, 322 (24) :3895-3901
[2]   Numerical study on turbulent heat transfer and pressure drop of nanofluid in coiled tube-in-tube heat exchangers [J].
Aly, Wael I. A. .
ENERGY CONVERSION AND MANAGEMENT, 2014, 79 :304-316
[3]   Highly Dispersed Multiwalled Carbon Nanotubes Decorated with Ag Nanoparticles in Water and Experimental Investigation of the Thermophysical Properties [J].
Amiri, Ahmad ;
Shanbedi, Mehdi ;
Eshghi, Hossein ;
Heris, Saeed Zeinali ;
Baniadam, Majid .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (05) :3369-3375
[4]   Graphene wrapped multiwalled carbon nanotubes dispersed nanofluids for heat transfer applications [J].
Aravind, S. S. Jyothirmayee ;
Ramaprabhu, S. .
JOURNAL OF APPLIED PHYSICS, 2012, 112 (12)
[5]   A Review of Thermal Conductivity Models for Nanofluids [J].
Aybar, Hikmet S. ;
Sharifpur, Mohsen ;
Azizian, M. Reza ;
Mehrabi, Mehdi ;
Meyer, Josua P. .
HEAT TRANSFER ENGINEERING, 2015, 36 (13) :1085-1110
[6]   Synthesis of spherical silica/multiwall carbon nanotubes hybrid nanostructures and investigation of thermal conductivity of related nanofluids [J].
Baghbanzadeh, Mohammadali ;
Rashidi, Alimorad ;
Rashtchian, Davood ;
Lotfi, Roghayeh ;
Amrollahi, Azadeh .
THERMOCHIMICA ACTA, 2012, 549 :87-94
[7]   Effects of temperature and concentration on the viscosity of nanofluids made of single-wall carbon nanotubes in ethylene glycol [J].
Baratpour, Mohsen ;
Karimipour, Arash ;
Afrand, Masoud ;
Wongwises, Somchai .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2016, 74 :108-113
[8]   EFFECT OF BROWNIAN-MOTION ON BULK STRESS IN A SUSPENSION OF SPHERICAL-PARTICLES [J].
BATCHELOR, GK .
JOURNAL OF FLUID MECHANICS, 1977, 83 (NOV) :97-117
[9]   THERMAL-CONDUCTIVITY MEASUREMENT FROM 30-K TO 750-K - THE 3-OMEGA METHOD [J].
CAHILL, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1990, 61 (02) :802-808
[10]   THERMAL CONDUCTIVITIES OF LIQUIDS - NEW DETERMINATIONS FOR 7 LIQUIDS AND APPRAISAL OF EXISTING VALUES [J].
CHALLONER, AR ;
POWELL, RW .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1956, 238 (1212) :90-106