Exponential-time differencing schemes for low-mass DPD systems

被引:6
|
作者
Phan-Thien, N. [1 ]
Mai-Duy, N. [1 ,2 ]
Pan, D. [1 ]
Khoo, B. C. [1 ]
机构
[1] Natl Univ Singapore, Fac Engn, Dept Mech Engn, Singapore 117548, Singapore
[2] Univ So Queensland, Fac Engn & Surveying, Computat Engn & Sci Res Ctr, Toowoomba, Qld 4350, Australia
基金
澳大利亚研究理事会;
关键词
Exponential-time differencing scheme; Dissipative particle dynamics; Stiff stochastic differential equation; Overdamped systems; DISSIPATIVE PARTICLE DYNAMICS; MODELS;
D O I
10.1016/j.cpc.2013.09.022
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Several exponential-time differencing (ETD) schemes are introduced into the method of dissipative particle dynamics (DPD) to solve the resulting stiff stochastic differential equations in the limit of small mass, where emphasis is placed on the handling of the fluctuating terms (i.e., those involving random forces). Their performances are investigated numerically in some test viscometric flows. Results obtained show that the present schemes outperform the velocity-Verlet algorithm regarding both the satisfaction of equipartition and the maximum allowable time step. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:229 / 235
页数:7
相关论文
共 50 条
  • [31] On the possible multiplicity of components of some low-mass systems
    Kovaleva, D
    BROWN DWARFS AND EXTRASOLAR PLANETS, 1998, 134 : 320 - 323
  • [32] Merging of low-mass systems and the origin of the Fundamental Plane
    Evstigneeva, EA
    de Carvalho, RR
    Ribeiro, AL
    Capelato, HV
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2004, 349 (03) : 1052 - 1058
  • [33] Merging of low-mass systems and the origin of the fundamental plane
    E.A. Evstigneeva
    R.R. de Carvalho
    A.L. Ribeiro
    H.V. Capelato
    Astrophysics and Space Science, 2003, 284 : 487 - 490
  • [34] EVOLUTION OF LOW-MASS CLOSE BINARY-SYSTEMS
    MCDERMOTT, PN
    TAAM, RE
    RINGWALD, FA
    ASTROPHYSICAL JOURNAL, 1988, 328 (02): : 617 - 631
  • [35] Quantifying and eliminating the time delay in stabilization exponential time differencing Runge-Kutta schemes for the Allen-Cahn equation
    Zhang, Hong
    Liu, Lele
    Qian, Xu
    Song, Songhe
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2024, 58 (01) : 191 - 221
  • [36] ENERGY STABILITY AND ERROR ESTIMATES OF EXPONENTIAL TIME DIFFERENCING SCHEMES FOR THE EPITAXIAL GROWTH MODEL WITHOUT SLOPE SELECTION
    Ju, Lili
    Li, Xiao
    Qiao, Zhonghua
    Zhang, Hui
    MATHEMATICS OF COMPUTATION, 2018, 87 (312) : 1859 - 1885
  • [37] Merging of low-mass systems and the origin of the fundamental plane
    Evstigneeva, EA
    De Carvalho, RR
    Ribeiro, AL
    Capelato, HV
    ASTROPHYSICS AND SPACE SCIENCE, 2003, 284 (02) : 487 - 490
  • [38] The arbitrary order implicit multistep exponential time differencing method and its application for nonlinear systems
    Tang, C
    Yan, HQ
    Zhang, H
    Liu, M
    Zhang, GM
    ACTA PHYSICA SINICA, 2004, 53 (06) : 1699 - 1703
  • [39] The locally extrapolated exponential time differencing LOD scheme for multidimensional reaction-diffusion systems
    Matt, H. P.
    Khaliq, A. Q. M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 285 : 256 - 278
  • [40] Effects of metallicity on the instability mass ratio of low-mass contact binary systems
    Wadhwa, Surjit S.
    Landin, Natalia R.
    Kostic, Petar
    Vince, Oliver
    Arbutina, Bojan
    De Horta, Ain Y.
    Filipovic, Miroslav D.
    Tothill, Nicholas F. H.
    Petrovic, Jelena
    Djurasevic, Gojko
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 527 (01) : 1 - 9