Q-Learning Based Energy Management Policies for a Single Sensor Node with Finite Buffer

被引:42
作者
Prabuchandran, K. J. [1 ]
Meena, Sunil Kumar [1 ]
Bhatnagar, Shalabh [1 ]
机构
[1] Indian Inst Sci, Dept Comp Sci & Automat, Bangalore 56012, Karnataka, India
关键词
Q-learning; energy management policies; energy harvesting; sensor networks;
D O I
10.1109/WCL.2012.112012.120754
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider the problem of finding optimal energy management policies in the presence of energy harvesting sources to maximize network performance. We formulate this problem in the discounted cost Markov decision process framework and apply two reinforcement learning algorithms. Prior work [1] obtains optimal policy in the case when the conversion function mapping energy to data transmitted is linear and provides heuristic policies in the case when the same is nonlinear. Our algorithms, however, provide optimal policies regardless of the form of the conversion function. Through simulations, our policies are seen to outperform those of [1] in the nonlinear case.
引用
收藏
页码:82 / 85
页数:4
相关论文
共 6 条
[1]  
[Anonymous], 1996, Neuro-dynamic programming
[2]  
Azar M. G., 2011 NIPS, P2411
[3]   Transmission with Energy Harvesting Nodes in Fading Wireless Channels: Optimal Policies [J].
Ozel, Omur ;
Tutuncuoglu, Kaya ;
Yang, Jing ;
Ulukus, Sennur ;
Yener, Aylin .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2011, 29 (08) :1732-1743
[4]  
Prabuchandran K. J., 2012, 20124 IISCCSASSLTR D
[5]   Optimal Energy Management Policies for Energy Harvesting Sensor Nodes [J].
Sharma, Vinod ;
Mukherji, Utpal ;
Joseph, Vinay ;
Gupta, Shrey .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2010, 9 (04) :1326-1336
[6]  
Tutuncuoglu K., 2010, IEEE T WIREL COMMUN, V99, P1