Sparse Representation of a Spatial Sound Field in a Reverberant Environment

被引:41
作者
Koyama, Shoichi [1 ,2 ]
Daudet, Laurent [3 ]
机构
[1] Paris Diderot Univ, Inst Langevin, F-75005 Paris, France
[2] Univ Tokyo, Grad Sch Informat Sci & Technol, Tokyo 1138656, Japan
[3] Paris Diderot Univ, PSL Univ, CNRS UMR 7587, Inst Langevin,ESPCI Paris, F-75005 Paris, France
关键词
Sound field decomposition; sparse representation; sound field recording; source identification; reverberation; ACOUSTIC HOLOGRAPHY; DECOMPOSITION; RECONSTRUCTION;
D O I
10.1109/JSTSP.2019.2901127
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper investigates sound-field modeling in a realistic reverberant setting. Starting from a few point-like microphone measurements, the goal is to estimate the direct source field within a whole three-dimensional (3-D) space around these microphones. Previous sparse sound field decompositions assumed only a spatial sparsity of the source distribution, but could generally not handle reverberation. We here add an explicit model of the reverberant sound field, that has two components: the first component sparse in the plane-wave domain, the other component low-rank as a multiplication of transfer functions and source signals. We derive the corresponding decomposition algorithm based on the alternating direction method of multipliers. We furthermore provide empirical rules for tuning the two parameters to be set in the algorithm. Numerical and experimental results indicate that the decomposition and reconstruction performances are significantly improved, in the case of reverberant environments.
引用
收藏
页码:172 / 184
页数:13
相关论文
共 36 条
[1]  
[Anonymous], FOUND TRENDS MACH LE
[2]  
Asaei A., 2014, P IEEE INT C AC SPEE, P1453
[3]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[4]   Near-field acoustic holography using sparse regularization and compressive sampling principles [J].
Chardon, Gilles ;
Daudet, Laurent ;
Peillot, Antoine ;
Ollivier, Francois ;
Bertin, Nancy ;
Gribonval, Remi .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2012, 132 (03) :1521-1534
[5]   Signal recovery by proximal forward-backward splitting [J].
Combettes, PL ;
Wajs, VR .
MULTISCALE MODELING & SIMULATION, 2005, 4 (04) :1168-1200
[6]   Sparse solutions to linear inverse problems with multiple measurement vectors [J].
Cotter, SF ;
Rao, BD ;
Engan, K ;
Kreutz-Delgado, K .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (07) :2477-2488
[7]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[8]  
Elad M, 2010, SPARSE AND REDUNDANT REPRESENTATIONS, P3, DOI 10.1007/978-1-4419-7011-4_1
[9]   Sound field reconstruction using a spherical microphone array [J].
Fernandez-Grande, Efren .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2016, 139 (03) :1168-1178
[10]   Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm [J].
Gorodnitsky, IF ;
Rao, BD .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (03) :600-616