A lattice-Boltzmann method with hierarchically refined meshes

被引:67
作者
Eitel-Amor, G. [1 ]
Meinke, M. [1 ]
Schroeder, W. [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Aerodynam, D-52062 Aachen, Germany
关键词
Lattice-Boltzmann method; Local grid refinement; Solution-adaptive refinement; LES; Subcritical turbulent flow past a sphere; IMMERSED-BOUNDARY METHOD; CARTESIAN GRID METHOD; EXTRAPOLATION METHOD; CIRCULAR CYLINDER; FLUID-DYNAMICS; FLOW; SPHERE; EQUATION; SIMULATIONS; MODELS;
D O I
10.1016/j.compfluid.2013.01.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A lattice-Boltzmann method (LBM) with local hierarchical adaptive grid refinement using a cell-centered lattice structure is presented which satisfies the requirements of high accuracy and high efficiency. It is applied to two-dimensional and three-dimensional laminar and turbulent flows over cylinders and spheres which constitute a comprehensive validation of LB methods for such blunt body problems. In the turbulent flow regime, a large-eddy simulation is used to capture the flow physics up to the inertial subrange. The numerical approach is described in detail and the accuracy of the method is demonstrated by considering the flow around a circular cylinder at Reynolds numbers Re = 20, 40, and 100 and the flow past a sphere at Re = 100, 300, 3700, and 10,000. The LBM plus local hierarchical grid refinement yields accurate temporal and spatial results and dramatically increases the computational efficiency by globally reducing the number of cells. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:127 / 139
页数:13
相关论文
共 50 条
  • [31] A CUDA-Based Implementation of a Fluid-Solid Interaction Solver:The Immersed Boundary Lattice-Boltzmann Lattice-Spring Method
    Wu, Tai-Hsien
    Khani, Mohammadreza
    Sawalha, Lina
    Springstead, James
    Kapenga, John
    Qi, Dewei
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2018, 23 (04) : 980 - 1011
  • [32] Lattice-Boltzmann Simulations of Electrowetting Phenomena
    Ruiz-Gutierrez, Elfego
    Ledesma-Aguilar, Rodrigo
    LANGMUIR, 2019, 35 (14) : 4849 - 4859
  • [33] Mass and momentum transfer across solid-fluid boundaries in the lattice-Boltzmann method
    Yin, Xuewen
    Le, Guigao
    Zhang, Junfeng
    PHYSICAL REVIEW E, 2012, 86 (02):
  • [34] Fluid dynamic forces acting on irregular shaped particles: Simulations by the Lattice-Boltzmann method
    Sommerfeld, M.
    Qadir, Z.
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2018, 101 : 212 - 222
  • [35] Data-Oriented Language Implementation of the Lattice-Boltzmann Method for Dense and Sparse Geometries
    Tomczak, Tadeusz
    APPLIED SCIENCES-BASEL, 2021, 11 (20):
  • [36] A machine-learning-based method for automatizing lattice-Boltzmann simulations of respiratory flows
    Ruettgers, Mario
    Waldmann, Moritz
    Schroeder, Wolfgang
    Lintermann, Andreas
    APPLIED INTELLIGENCE, 2022, 52 (08) : 9080 - 9100
  • [37] Lattice-Boltzmann hydrodynamics on parallel systems
    Kandhai, D
    Koponen, A
    Hoekstra, AG
    Kataja, M
    Timonen, J
    Sloot, PMA
    COMPUTER PHYSICS COMMUNICATIONS, 1998, 111 (1-3) : 14 - 26
  • [38] Numerical Investigation of Conjugate Heat Transfer and Natural Convection Using the Lattice-Boltzmann Method for Realistic Thermophysical Properties
    Landl, Michael
    Prieler, Rene
    Monaco, Ernesto
    Hochenauer, Christoph
    FLUIDS, 2023, 8 (05)
  • [39] Lattice-Boltzmann hydrodynamics of single-square-grid generated turbulence - a partial entropic stabilisation approach
    Yeoh, Chin Vern
    Ooi, Ean Hin
    Foo, Ji Jinn
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (05) : 1301 - 1326
  • [40] A quantum algorithm for the lattice-Boltzmann method advection-diffusion equation
    Wawrzyniak, David
    Winter, Josef
    Schmidt, Steffen
    Indinger, Thomas
    Janssen, Christian F.
    Schramm, Uwe
    Adams, Nikolaus A.
    COMPUTER PHYSICS COMMUNICATIONS, 2025, 306