ClearPose: Large-scale Transparent Object Dataset and Benchmark

被引:22
作者
Chen, Xiaotong [1 ]
Zhang, Huijie [1 ]
Yu, Zeren [1 ]
Opipari, Anthony [1 ]
Jenkins, Odest Chadwicke [1 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
来源
COMPUTER VISION, ECCV 2022, PT VIII | 2022年 / 13668卷
关键词
Transparent objects; Depth completion; Pose estimation; Dataset and benchmark;
D O I
10.1007/978-3-031-20074-8_22
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Transparent objects are ubiquitous in household settings and pose distinct challenges for visual sensing and perception systems. The optical properties of transparent objects leave conventional 3D sensors alone unreliable for object depth and pose estimation. These challenges are highlighted by the shortage of large-scale RGB-Depth datasets focusing on transparent objects in real-world settings. In this work, we contribute a large-scale real-world RGB-Depth transparent object dataset named ClearPose to serve as a benchmark dataset for segmentation, scene-level depth completion and object-centric pose estimation tasks. The ClearPose dataset contains over 350K labeled real-world RGB-Depth frames and 5M instance annotations covering 63 household objects. The dataset includes object categories commonly used in daily life under various lighting and occluding conditions as well as challenging test scenarios such as cases of occlusion by opaque or translucent objects, non-planar orientations, presence of liquids, etc. We benchmark several state-of-the-art depth completion and object pose estimation deep neural networks on ClearPose. The dataset and benchmarking source code is available at https://githuh.com/opipari/ClearPose.
引用
收藏
页码:381 / 396
页数:16
相关论文
共 26 条
[1]   ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial, and Multimap SLAM [J].
Campos, Carlos ;
Elvira, Richard ;
Gomez Rodriguez, Juan J. ;
Montiel, Jose M. M. ;
Tardos, Juan D. .
IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (06) :1874-1890
[2]   GhostPose: Multi-view Pose Estimation of Transparent Objects for Robot Hand Grasping [J].
Chang, Jaesik ;
Kim, Minju ;
Kang, Seongmin ;
Han, Heungwoo ;
Hong, Sunpyo ;
Jang, Kyunghun ;
Kang, Sungchul .
2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, :5749-5755
[3]   TOM-Net: Learning Transparent Object Matting from a Single Image [J].
Chen, Guanying ;
Han, Kai ;
Wong, Kwan-Yee K. .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :9233-9241
[4]  
Chen LC, 2017, Arxiv, DOI [arXiv:1706.05587, DOI 10.48550/ARXIV.1706.05587]
[5]  
Chen XT, 2022, Arxiv, DOI arXiv:2203.00283
[6]  
Eigen D, 2014, ADV NEUR IN, V27
[7]  
Fang H., 2022, arXiv
[8]  
He KM, 2017, IEEE I CONF COMP VIS, P2980, DOI [10.1109/ICCV.2017.322, 10.1109/TPAMI.2018.2844175]
[9]   FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation [J].
He, Yisheng ;
Huang, Haibin ;
Fan, Haoqiang ;
Chen, Qifeng ;
Sun, Jian .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :3002-3012
[10]   BOP Challenge 2020 on 6D Object Localization [J].
Hodan, Tomas ;
Sundermeyer, Martin ;
Drost, Bertram ;
Labbe, Yann ;
Brachmann, Eric ;
Michel, Frank ;
Rother, Carsten ;
Matas, Jiri .
COMPUTER VISION - ECCV 2020 WORKSHOPS, PT II, 2020, 12536 :577-594