Multiscale three-dimensional CFD modeling for PECVD of amorphous silicon thin films

被引:29
作者
Crose, Marquis [1 ]
Zhang, Weiqi [1 ]
Anh Tran [1 ]
Christofides, Panagiotis D. [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Elect & Comp Engn, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Multiscale modeling; Computational fluid dynamics; Thin film growth; Parallel computing; CHEMICAL-VAPOR-DEPOSITION; SOLAR-CELLS; SIMULATION; KINETICS; SYSTEMS; REACTOR; GROWTH;
D O I
10.1016/j.compchemeng.2018.03.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The development of a three-dimensional, multiscale computational fluid dynamics (CFD) model is presented here which aims to capture the deposition of amorphous silicon thin films via plasma-enhanced chemical vapor deposition (PECVD). The macroscopic reactor scale and the microscopic thin film growth domains which define the multiscale model are linked using a dynamic boundary which is updated at the completion of each time step. A novel parallel processing scheme built around a message passing interface (MPI) structure, in conjunction with a distributed collection of kinetic Monte Carlo algorithms, is applied in order to allow for transient simulations to be conducted using a mesh with greater than 1.5 million cells. Due to the frequent issue of thickness non-uniformity in thin film production, an improved PECVD reactor design is proposed. The resulting geometry is shown to reduce the product offset from similar to 25 nm to less than 13 nm using identical deposition parameters. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:184 / 195
页数:12
相关论文
共 21 条
[1]  
[Anonymous], P 2002 INT C COMP NA
[2]  
ANSYS Inc, 2013, ANSTS FLUENT THEOR G
[3]   Thermally activated mechanisms of hydrogen abstraction by growth precursors during plasma deposition of silicon thin films [J].
Bakos, T ;
Valipa, MS ;
Maroudas, D .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (05)
[4]   First-principles theoretical analysis of silyl radical diffusion on silicon surfaces [J].
Bakos, Tamas ;
Valipa, Mayur S. ;
Maroudas, Dimitrios .
JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (10)
[5]   A multi-parallel multiscale computational framework for chemical vapor deposition processes [J].
Cheimarios, N. ;
Kokkoris, G. ;
Boudouvis, A. G. .
JOURNAL OF COMPUTATIONAL SCIENCE, 2016, 15 :81-85
[6]   A CFD MODEL FOR THE PECVD OF SILICON-NITRIDE [J].
COLLINS, DJ ;
STROJWAS, AJ ;
WHITE, DD .
IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 1994, 7 (02) :176-183
[7]   Multiscale Computational Fluid Dynamics: Methodology and Application to PECVD of Thin Film Solar Cells [J].
Crose, Marquis ;
Anh Tran ;
Christofides, Panagiotis D. .
COATINGS, 2017, 7 (02)
[8]   Multiscale modeling and run-to-run control of PECVD of thin film solar cells [J].
Crose, Marquis ;
Sang-Il Kwon, Joseph ;
Tran, Anh ;
Christofides, Panagiotis D. .
RENEWABLE ENERGY, 2017, 100 :129-140
[9]   Multiscale modeling and operation of PECVD of thin film solar cells [J].
Crose, Marquis ;
Kwon, Joseph Sang-Il ;
Nayhouse, Michael ;
Ni, Dong ;
Christofides, Panagiotis D. .
CHEMICAL ENGINEERING SCIENCE, 2015, 136 :50-61
[10]  
Culler DavidE., 1999, PARALLEL COMPUTER AR