Shubnikov-de Haas effect and angular-dependent magnetoresistance oscillation of kappa-(BETS)(2)GaCl4

被引:14
|
作者
Tajima, H
Kobayashi, A
Naito, T
Kobayashi, H
机构
[1] TOHO UNIV,FAC SCI,DEPT CHEM,FUNBASHI,CHIBA 274,JAPAN
[2] INST MOLEC SCI,OKAZAKI,AICHI 444,JAPAN
关键词
organic crystals; metal; electronic band structure;
D O I
10.1016/0038-1098(96)00084-1
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The Shubnikov-de Haas (SdH) effect and angular-dependent magnetoresistance oscillation (ADMRO) were observed in magnetoresistance measurements at 0.5 K for an organic conductor kappa-(BETS)(2)GaCl4. From a frequency of a SdH oscillation, a Fermi surface cross-section perpendicular to the crystallographic b-axis is estimated to be 4.20 x 10(15)cm(-2), which corresponds to 105% of the first Brillouin zone. From the results of ADMRO, a Fermi wave number along the crystallographic c-axis is evaluated to be 0.35 Angstrom(-1). Both results are consistent with a band structure calculated on the basis of the extended Huckel method.
引用
收藏
页码:755 / 759
页数:5
相关论文
共 50 条
  • [1] Shubnikov-de Haas effect and angular-dependent magnetoresistance oscillation of kappa-(BETS)(2)GaCl4
    Tajima, H
    Kobayashi, A
    Naito, T
    Kobayashi, H
    SYNTHETIC METALS, 1997, 86 (1-3) : 1911 - 1912
  • [2] Shubnikov-de Haas effect and angular-dependent magnetoresistance oscillation of κ-(BETS)2GaCl4
    Univ of Tokyo, Tokyo, Japan
    Solid State Commun, 8 (755-759):
  • [3] Shubnikov-de Haas Effect and Angular-Dependent Magnetoresistance in Layered Organic Conductor β"-(ET)(TCNQ)
    Yasuzuka, Syuma
    Uji, Shinya
    Konoike, Takako
    Terashima, Taichi
    Graf, David
    Choi, Eun Sang
    Brooks, James S.
    Yamamoto, Hiroshi M.
    Kato, Reizo
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2016, 85 (08)
  • [4] Magnetoresistance and Shubnikov-de Haas oscillation in YSb
    Yu, Qiao-He
    Wang, Yi-Yan
    Lou, Rui
    Guo, Peng-Jie
    Xu, Sheng
    Liu, Kai
    Wang, Shancai
    Xia, Tian-Long
    EPL, 2017, 119 (01)
  • [5] Giant Magnetoresistance and Shubnikov-de Haas Effect in LuSb
    Kleinert, M.
    Pavlosiuk, O.
    Swatek, P.
    Kaczorowski, D.
    Wisniewski, P.
    ACTA PHYSICA POLONICA A, 2018, 133 (03) : 538 - 540
  • [6] Shubnikov-de Haas effect and angular dependent magnetoresistance oscillations in SbCl5-intercalated graphite
    Baxendale, M
    Mordkovich, VZ
    Yoshimura, S
    SOLID STATE COMMUNICATIONS, 1998, 107 (04) : 165 - 169
  • [7] Shubnikov-De Haas oscillation and magnetoresistance in YNi2B2C
    Miyamoto, S
    Takeya, H
    Kadowaki, K
    SOLID STATE COMMUNICATIONS, 1997, 103 (01) : 5 - 7
  • [8] Angular-Dependent Phase Factor of Shubnikov-de Haas Oscillations in the Dirac Semimetal Cd3As2
    Xiang, Z. J.
    Zhao, D.
    Jin, Z.
    Shang, C.
    Ma, L. K.
    Ye, G. J.
    Lei, B.
    Wu, T.
    Xia, Z. C.
    Chen, X. H.
    PHYSICAL REVIEW LETTERS, 2015, 115 (22)
  • [9] SHUBNIKOV-DE HAAS OSCILLATION IN LONGITUDINAL MAGNETORESISTANCE OF BISMUTH-ANTIMONY ALLOY
    TOYODA, K
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1975, 38 (05) : 1543 - 1543
  • [10] Strong evidence of field-induced superconductivity and Shubnikov-de!Haas oscillation in κ-(BETS)2FeBr4
    Konoike, T
    Fujiwara, H
    Zhang, B
    Kobayashi, H
    Nishimura, M
    Yasuzuka, S
    Enomoto, K
    Uji, S
    JOURNAL DE PHYSIQUE IV, 2004, 114 : 223 - 226