Molecular dynamics simulation-guided drug sensitivity prediction for lung cancer with rare EGFR mutations

被引:42
|
作者
Ikemura, Shinnosuke [1 ,2 ,3 ]
Yasuda, Hiroyuki [1 ]
Matsumoto, Shingo [4 ]
Kamada, Mayumi [5 ]
Hamamoto, Junko [1 ]
Masuzawa, Keita [1 ]
Kobayashi, Keigo [1 ]
Manabe, Tadashi [1 ]
Arai, Daisuke [1 ]
Nakachi, Ichiro [1 ]
Kawada, Ichiro [1 ]
Ishioka, Kota [1 ,6 ]
Nakamura, Morio [6 ]
Namkoong, Ho [1 ]
Naoki, Katsuhiko [2 ]
Ono, Fumie [5 ]
Araki, Mitsugu [5 ]
Kanada, Ryo [7 ]
Ma, Biao [8 ]
Hayashi, Yuichiro [9 ]
Mimaki, Sachiyo [3 ]
Yoh, Kiyotaka [4 ]
Kobayashi, Susumu S. [10 ,11 ,12 ]
Kohno, Takashi [13 ]
Okuno, Yasushi [5 ]
Goto, Koichi [4 ]
Tsuchihara, Katsuya [3 ]
Soejima, Kenzo [1 ]
机构
[1] Keio Univ, Sch Med, Div Pulm Med, Dept Med,Shinjuku Ku, Tokyo 1608582, Japan
[2] Keio Univ, Sch Med, Keio Canc Ctr, Shinjuku Ku, Tokyo 1608582, Japan
[3] Natl Canc Ctr, Exploratory Oncol Res & Clin Trial Ctr, Div Translat Informat, Kashiwa, Chiba 2778577, Japan
[4] Natl Canc Ctr Hosp East, Dept Thorac Oncol, Kashiwa, Chiba 2778577, Japan
[5] Kyoto Univ, Grad Sch Med, Shogoin Sakyo Ku, Kyoto 6068507, Japan
[6] Tokyo Saiseikai Cent Hosp, Minato Ku, Tokyo 1080073, Japan
[7] RIKEN, Compass Hlth Life Res Complex Program, Kobe, Hyogo 6500047, Japan
[8] Fdn Biomed Res & Innovat, Procluster Kobe, Res & Dev Grp Silico Drug Discovery, Kobe, Hyogo 6500047, Japan
[9] Keio Univ, Sch Med, Dept Pathol, Tokyo 1608582, Japan
[10] Natl Canc Ctr, Exploratory Oncol Res & Clin Trial Ctr, Div Translat Genom, Kashiwa, Chiba 2778577, Japan
[11] Beth Israel Deaconess Med Ctr, Div Hematol Oncol, Boston, MA 02115 USA
[12] Harvard Med Sch, Boston, MA 02115 USA
[13] Natl Canc Ctr, Res Inst, Div Genome Biol, Tokyo 1040045, Japan
基金
日本学术振兴会;
关键词
rare EGFR mutation; mutation diversity; osimertinib; in silico prediction model; nonsmall cell lung cancer; TYROSINE KINASE INHIBITORS; FACTOR-RECEPTOR GENE; RESISTANCE; ACTIVATION; GEFITINIB; HETEROGENEITY; MECHANISM; AFATINIB; MUTANTS;
D O I
10.1073/pnas.1819430116
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Next generation sequencing (NGS)-based tumor profiling identified an overwhelming number of uncharacterized somatic mutations, also known as variants of unknown significance (VUS). The therapeutic significance of EGFR mutations outside mutational hotspots, consisting of >50 types, in nonsmall cell lung carcinoma (NSCLC) is largely unknown. In fact, our pan-nation screening of NSCLC without hotspot EGFR mutations (n = 3,779) revealed that the majority (>90%) of cases with rare EGFR mutations, accounting for 5.5% of the cohort subjects, did not receive EGFR-tyrosine kinase inhibitors (TKIs) as a first-line treatment. To tackle this problem, we applied a molecular dynamics simulation-based model to predict the sensitivity of rare EGFR mutants to EGFR-TKIs. The model successfully predicted the diverse in vitro and in vivo sensitivities of exon 20 insertion mutants, including a singleton, to osimertinib, a third-generation EGFR-TKI (R-2 = 0.72, P = 0.0037). Additionally, our model showed a higher consistency with experimentally obtained sensitivity data than other prediction approaches, indicating its robustness in analyzing complex cancer mutations. Thus, the in silico prediction model will be a powerful tool in precision medicine for NSCLC patients carrying rare EGFR mutations in the clinical setting. Here, we propose an insight to overcome mutation diversity in lung cancer.
引用
收藏
页码:10025 / 10030
页数:6
相关论文
共 50 条
  • [1] Clinical characterization of rare EGFR mutations in non-small cell lung cancer and in silico prediction of drug sensitivity
    Ikemura, S.
    Yasuda, H.
    Matsumoto, S.
    Kamada, M.
    Betsuyaku, T.
    Okuno, Y.
    Goto, K.
    Tsuchihara, K.
    Soejima, K.
    ANNALS OF ONCOLOGY, 2018, 29 : 513 - 513
  • [2] Clinical characterization and in silico drug sensitivity prediction model of rare EGFR mutations in non-small cell lung cancer
    Ikemura, Shinnosuke
    Yasuda, Hiroyuki
    Matsumoto, Shingo
    Kamada, Mayumi
    Hamamoto, Junko
    Betsuyaku, Tomoko
    Okuno, Yasushi
    Goto, Koichi
    Tsuchihara, Katsuya
    Soejima, Kenzo
    JOURNAL OF CLINICAL ONCOLOGY, 2018, 36 (15)
  • [3] D3EGFR: a webserver for deep learning-guided drug sensitivity prediction and drug response information retrieval for EGFR mutation-driven lung cancer
    Shi, Yulong
    Li, Chongwu
    Zhang, Xinben
    Peng, Cheng
    Sun, Peng
    Zhang, Qian
    Wu, Leilei
    Ding, Ying
    Xie, Dong
    Xu, Zhijian
    Zhu, Weiliang
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (03)
  • [4] Molecular dynamics prediction of the mechanism of acquired resistance to EGFR inhibitors in EGFR-mutant lung cancer
    Lee, Youngjoo
    Choi, Yu-Ra
    CANCER RESEARCH, 2019, 79 (13)
  • [5] EGFR Exon 18 Mutations in Lung Cancer: Molecular Predictors of Sensitivity to Afatinib or Neratinib but Not to Other EGFR-TKIs
    Kobayashi, Yoshihisa
    Togashi, Yosuke
    Yatabe, Yasushi
    Mizuuchi, Hiroshi
    Jangchul, Park
    Kondo, Chiaki
    Shimoji, Masaki
    Sato, Katsuaki
    Suda, Kenichi
    Tomizawa, Kenji
    Takemoto, Toshiki
    Hida, Toyoaki
    Nishio, Kazuto
    Mitsudomi, Tetsuya
    JOURNAL OF THORACIC ONCOLOGY, 2015, 10 (09) : S177 - S178
  • [6] Identification of 1,2,4-Oxadiazoles-Based Novel EGFR Inhibitors: Molecular Dynamics Simulation-Guided Identification and in vitro ADME Studies
    Unadkat, Vishal
    Rohit, Shishir
    Parikh, Paranjay
    Patel, Kaushal
    Sanna, Vinod
    Singh, Sanjay
    ONCOTARGETS AND THERAPY, 2022, 15 : 479 - 495
  • [7] Molecular targeted therapy of lung cancer: EGFR mutations and response to EGFR inhibitors
    Haber, D. A.
    Bell, D. W.
    Sordella, R.
    Kwak, E. L.
    Godin-Heymann, N.
    Sharma, S. V.
    Lynch, T. J.
    Settleman, J.
    Molecular Approaches to Controlling Cancer, 2005, 70 : 419 - 426
  • [8] Multiple mutations in the EGFR gene in lung cancer is rare but should not be forgettable
    Miyata, Ryo
    Hamaji, Masatsugu
    TRANSLATIONAL LUNG CANCER RESEARCH, 2022,
  • [9] Specificity and sensitivity of immunohistochemistry for detecting EGFR mutations in lung cancer cells
    Fouret, P.
    Ilie, M.
    Roux, S.
    Alifano, M.
    Hofman, V.
    Leroy-Ladurie, F.
    Rouquette, I.
    Validire, P.
    Vaylet, F.
    Hofman, P.
    VIRCHOWS ARCHIV, 2011, 459 : S316 - S316
  • [10] A systematic profile of clinical inhibitors responsive to EGFR somatic amino acid mutations in lung cancer: implication for the molecular mechanism of drug resistance and sensitivity
    Xinghao Ai
    Yingjia Sun
    Haidong Wang
    Shun Lu
    Amino Acids, 2014, 46 : 1635 - 1648