Phase-pure VO2 nanoporous structure for binder-free supercapacitor performances

被引:52
作者
Basu, Raktima [1 ]
Ghosh, Subrata [1 ]
Bera, Santanu [2 ]
Das, A. [1 ]
Dhara, S. [1 ]
机构
[1] Homi Bhabha Natl Inst, Indira Gandhi Ctr Atom Res, Surface & Nanosci Div, Kalpakkam 603102, Tamil Nadu, India
[2] Homi Bhabha Natl Inst, Water & Steam Chem Div, BARC Facil, Kalpakkam 603102, Tamil Nadu, India
关键词
SHELL NANOWIRE ARRAYS; ALL-SOLID-STATE; INSULATOR-TRANSITION; VANADIUM NITRIDE; GRAPHENE OXIDE; CARBON; FIBER; ELECTRODE; COMPOSITE; METAL;
D O I
10.1038/s41598-019-40225-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Vanadium oxides are anticipated as a high-performance energy storage electrode due to their coupled double layer and pseudo-capacitative charge storage mechanism. In the present work, we investigated the influence of different structural phases of as-grown VO2 nanoporous structure and corresponding oxidation states on the supercapacitor performance. This nanoporous structure facilitates fast ion diffusion and transport. It is shown that stoichiometric monoclinic VO2, with V oxidation state of +4, provides superior charge storage capacity with a capacitance value of 33 mF/cm(2), capacitance retention of 93.7% and Coulombic efficiency of 98.2%, to those for VO2 structures with mixed oxidation states of V5+ and V4+. A comparable high energy density is also recorded for the sample with all V4+. Scanning Kelvin probe microscopy results clarify further the formation of space charge region between VO2 and carbon paper. These key findings indicate the potentiality of binder-free single phase monoclinic VO2 porous structure towards the next-generation micro-supercapacitor application.
引用
收藏
页数:11
相关论文
共 53 条
[1]   Titanium vanadium nitride electrode for micro-supercapacitors [J].
Achour, A. ;
Lucio-Porto, R. ;
Chaker, M. ;
Arman, A. ;
Ahmadpourian, A. ;
Soussou, M. A. ;
Boujtita, M. ;
Le Brizoual, L. ;
Djouadi, M. A. ;
Brousse, T. .
ELECTROCHEMISTRY COMMUNICATIONS, 2017, 77 :40-43
[2]   Aligned carbon nanotube/zinc oxide nanowire hybrids as high performance electrodes for supercapacitor applications [J].
Al-Asadi, Ahmed S. ;
Henley, Luke Alexander ;
Wasala, Milinda ;
Muchharla, Baleeswaraiah ;
Perea-Lopez, Nestor ;
Carozo, Victor ;
Lin, Zhong ;
Terrones, Mauricio ;
Mondal, Kanchan ;
Kordas, Krisztian ;
Talapatra, Saikat .
JOURNAL OF APPLIED PHYSICS, 2017, 121 (12)
[3]   Fiber Supercapacitors Made of Nanowire-Fiber Hybrid Structures for Wearable/Flexible Energy Storage [J].
Bae, Joonho ;
Song, Min Kyu ;
Park, Young Jun ;
Kim, Jong Min ;
Liu, Meilin ;
Wang, Zhong Lin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (07) :1683-1687
[4]   The role of 1-D finite size Heisenberg chains in increasing the metal to insulator transition temperature in hole rich VO2 [J].
Basu, Raktima ;
Sardar, Manas ;
Bera, Santanu ;
Magudapathy, P. ;
Dhara, Sandip .
NANOSCALE, 2017, 9 (19) :6537-6544
[5]   An Integrated "Energy Wire" for both Photoelectric Conversion and Energy Storage [J].
Chen, Tao ;
Qiu, Longbin ;
Yang, Zhibin ;
Cai, Zhenbo ;
Ren, Jing ;
Li, Houpu ;
Lin, Huijuan ;
Sun, Xuemei ;
Peng, Huisheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (48) :11977-11980
[6]  
Conway B, 1999, ELECTROCHEMICAL SUPE
[7]   A V2O5 nanorod decorated graphene/polypyrrole hybrid electrode: a potential candidate for supercapacitors [J].
De Adhikari, Amrita ;
Oraon, Ramesh ;
Tiwari, Santosh Kumar ;
Lee, Joong Hee ;
Kim, Nam Hoon ;
Nayak, Ganesh Chandra .
NEW JOURNAL OF CHEMISTRY, 2017, 41 (04) :1704-1713
[8]   Surface Modification of Al Foils for Aluminum Electrolytic Capacitor [J].
Du, Xianfeng ;
Lin, Baige ;
Li, Bing ;
Feng, Tianyu ;
Mao, Shengchun ;
Xu, Youlong .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (11)
[9]   Supercapacitors: from the Leyden jar to electric busses [J].
Dubal D.P. ;
Wu Y.P. ;
Holze R. .
ChemTexts, 2 (3)
[10]   Integrated power fiber for energy conversion and storage [J].
Fu, Yongping ;
Wu, Hongwei ;
Ye, Shuyang ;
Cai, Xin ;
Yu, Xiao ;
Hou, Shaocong ;
Kafafy, Hanny ;
Zou, Dechun .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (03) :805-812