Improving Vaccine and Immunotherapy Design Using Biomaterials

被引:146
作者
Bookstaver, Michelle L. [1 ]
Tsai, Shannon J. [1 ]
Bromberg, Jonathan S. [2 ,3 ,4 ,5 ]
Jewell, Christopher M. [1 ,4 ,5 ,6 ]
机构
[1] Univ Maryland, Fischell Dept Bioengn, 8228 Paint Branch Dr, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Surg, Sch Med, 29 South Greene St, Baltimore, MD 21201 USA
[3] Univ Maryland, Ctr Vasc & Inflammatory Dis, Sch Med, 800 West Baltimore St, Baltimore, MD 21201 USA
[4] Univ Maryland, Dept Microbiol & Immunol, Sch Med, 685 West Baltimore St, Baltimore, MD 21201 USA
[5] Marlene & Stewart Greenebaum Canc Ctr, 22 South Greene St, Baltimore, MD 21201 USA
[6] United States Dept Vet Affairs, 10 North Greene St, Baltimore, MD 21201 USA
基金
美国国家科学基金会;
关键词
LYMPH-NODE MICROENVIRONMENT; T-CELLS; POLYELECTROLYTE MULTILAYERS; IMMUNE-RESPONSE; DENDRITIC CELLS; IN-VIVO; CROSS-PRESENTATION; ANTIGEN; NANOPARTICLES; DELIVERY;
D O I
10.1016/j.it.2017.10.002
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Polymers, lipids, scaffolds, microneedles, and other biomaterials are rapidly emerging as technologies to improve the efficacy of vaccines against infectious disease and immunotherapies for cancer, autoimmunity, and transplantation. New studies are also providing insight into the interactions between these materials and the immune system. This insight can be exploited for more efficient design of vaccines and immunotherapies. Here, we describe recent advances made possible through the unique features of biomaterials, as well as the important questions for further study.
引用
收藏
页码:135 / 150
页数:16
相关论文
共 96 条
[1]  
Ali OA, 2009, NAT MATER, V8, P151, DOI [10.1038/NMAT2357, 10.1038/nmat2357]
[2]   Impact of molecular weight on the intrinsic immunogenic activity of poly(beta amino esters) [J].
Andorko, James I. ;
Pineault, Kevin G. ;
Jewell, Christopher M. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2017, 105 (04) :1219-1229
[3]   Intrinsic immunogenicity of rapidly-degradable polymers evolves during degradation [J].
Andorko, James I. ;
Hess, Krystina L. ;
Pineault, Kevin G. ;
Jewell, Christopher M. .
ACTA BIOMATERIALIA, 2016, 32 :24-34
[4]   Harnessing Biomaterials to Engineer the Lymph Node Microenvironment for Immunity or Tolerance [J].
Andorko, James I. ;
Hess, Krystina L. ;
Jewell, Christopher M. .
AAPS JOURNAL, 2015, 17 (02) :323-338
[5]   Tolerability, usability and acceptability of dissolving microneedle patch administration in human subjects [J].
Arya, Jaya ;
Henry, Sebastien ;
Kalluri, Haripriya ;
McAllister, Devin V. ;
Pewin, Winston P. ;
Prausnitz, Mark R. .
BIOMATERIALS, 2017, 128 :1-7
[6]   Targeted Delivery of Immunomodulators to Lymph Nodes [J].
Azzi, Jamil ;
Yin, Qian ;
Uehara, Mayuko ;
Ohori, Shunsuke ;
Tang, Li ;
Cai, Kaimin ;
Ichimura, Takaharu ;
McGrath, Martina ;
Maarouf, Omar ;
Kefaloyianni, Eirini ;
Loughhead, Scott ;
Petr, Jarolim ;
Sun, Qidi ;
Kwon, Mincheol ;
Tullius, Stefan ;
von Andrian, Ulrich H. ;
Cheng, Jianjun ;
Abdi, Reza .
CELL REPORTS, 2016, 15 (06) :1202-1213
[7]   Toward a Single-Dose Vaccination Strategy with Self-Encapsulating PLGA Microspheres [J].
Bailey, Brittany A. ;
Ochyl, Lukasz J. ;
Schwendeman, Steven P. ;
Moon, James J. .
ADVANCED HEALTHCARE MATERIALS, 2017, 6 (12)
[8]   Injectable cryogel-based whole-cell cancer vaccines [J].
Bencherif, Sidi A. ;
Sands, R. Warren ;
Ali, Omar A. ;
Li, Weiwei A. ;
Lewin, Sarah A. ;
Braschler, Thomas M. ;
Shih, Ting-Yu ;
Verbeke, Catia S. ;
Bhatta, Deen ;
Dranoff, Glenn ;
Mooney, David J. .
NATURE COMMUNICATIONS, 2015, 6
[9]   Micro and Nano Material Carriers for Immunomodulation [J].
Bracho-Sanchez, E. ;
Xia, C. Q. ;
Clare-Salzler, M. J. ;
Keselowsky, B. G. .
AMERICAN JOURNAL OF TRANSPLANTATION, 2016, 16 (12) :3362-3370
[10]   An RNA nanoparticle vaccine against Zika virus elicits antibody and CD8+T cell responses in a mouse model [J].
Chahal, Jasdave S. ;
Fang, Tao ;
Woodham, Andrew W. ;
Khan, Omar F. ;
Ling, Jingjing ;
Anderson, Daniel G. ;
Ploegh, Hidde L. .
SCIENTIFIC REPORTS, 2017, 7