Adaptive Cascade Deep Convolutional Neural Networks for face alignment

被引:26
作者
Dong, Yuan [1 ]
Wu, Yue [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Beijing 100876, Peoples R China
关键词
Face alignment; Adaptive cascade; Deep convolutional networks; Gaussian distribution;
D O I
10.1016/j.csi.2015.06.004
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Deep convolutional network cascade has been successfiffly applied for face alignment. The configuration of each network, including the selecting strategy of local patches for training and the input range of local patches, is crucial for achieving desired performance. In this paper, we propose an adaptive cascade framework, termed Adaptive Cascade Deep Convolutional Neural Networks (ACDCNN) which adjusts the cascade structure adaptively. Gaussian distribution is utilized to bridge the successive networks. Extensive experiments demonstrate that our proposed ACDCNN achieves the state-of-the-art in accuracy, but with reduced model complexity and increased robustness. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:105 / 112
页数:8
相关论文
共 26 条
[1]  
[Anonymous], P IEEE C COMP VIS PA
[2]  
[Anonymous], LECT NOTES COMPUT SC, DOI DOI 10.1007/978-3-642-33786-4
[3]  
[Anonymous], P INT C NEUR INF PRO
[4]  
Belhumeur PN, 2011, PROC CVPR IEEE, P545, DOI 10.1109/CVPR.2011.5995602
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]  
Cao XD, 2012, PROC CVPR IEEE, P2887, DOI 10.1109/CVPR.2012.6248015
[7]  
Cootes T. F., 1998, Computer Vision - ECCV'98. 5th European Conference on Computer Vision. Proceedings, P484, DOI 10.1007/BFb0054760
[8]  
Dantone M, 2012, PROC CVPR IEEE, P2578, DOI 10.1109/CVPR.2012.6247976
[9]   Cascaded Pose Regression [J].
Dollar, Piotr ;
Welinder, Peter ;
Perona, Pietro .
2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, :1078-1085
[10]   A Review of Active Appearance Models [J].
Gao, Xinbo ;
Su, Ya ;
Li, Xuelong ;
Tao, Dacheng .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2010, 40 (02) :145-158