Characterization of ex vivo cultured limbal, conjunctival, and oral mucosal cells: A comparative study with implications in transplantation medicine

被引:0
作者
Dhamodaran, Kamesh [1 ,4 ]
Subramani, Murali [1 ,5 ]
Jeyabalan, Nallathambi [2 ]
Ponnalagu, Murugeswari [1 ]
Chevour, Priyanka [2 ]
Shetty, Reshma [1 ]
Matalia, Himanshu [3 ]
Shetty, Rohit [3 ]
Prince, Sabina Evan [4 ]
Das, Debashish [1 ]
机构
[1] Narayana Nethralaya Fdn, GROW Res Lab, Stem Cell Res Lab, Bangalore, Karnataka, India
[2] Narayana Nethralaya Fdn, GROW Res Lab, Bangalore, Karnataka, India
[3] Narayana Hlth City, Narayana Nethralaya Fdn, Narayana Nethralaya Post Grad Inst Ophthalmol, Dept Cornea & Refract Surg, Bangalore 560099, Karnataka, India
[4] VIT Univ, Sch Biosci & Technol, Vellore, Tamil Nadu, India
[5] Bharathidasan Univ, Jamal Mohamed Coll, Postgrad & Res Dept Biotechnol, Tiruchirappalli, Tamil Nadu, India
来源
MOLECULAR VISION | 2015年 / 21卷
关键词
ANGIOGENESIS-RELATED FACTORS; STEM-CELLS; CORNEAL EPITHELIUM; CULTIVATED LIMBAL; AMNIOTIC MEMBRANE; NOTCH; DIFFERENTIATION; PROLIFERATION; EXPRESSION; AUTOPHAGY;
D O I
暂无
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Purpose: Limbal epithelial stem cell deficiency is caused by exposure of the cornea to thermal, chemical, or radiation burns or by diseases (aniridia and Stevens-Johnson syndrome). Autologous cell transplantation is a widely used therapeutic modality for restoring the corneal surface in such pathological conditions. Ex vivo cultured limbal, conjunctival, and oral biopsies have been widely used to reconstruct the corneal surface with variable outcomes. Culture characterization of the ex vivo cultured cells would provide insight and clues into the underlying signaling mechanisms that would aid in determining the probable transplantation outcome. Comparison of the vital proteins and genes among the three ex vivo cultured tissues has implications in clinical practice. To address this issue, we characterized and compared the proliferative and differentiated properties of ex vivo cultured limbal, conjunctival, and oral biopsies used for cell-based therapy for corneal surface restoration. Methods: Limbal, conjunctival, and oral biopsies were collected with informed patient consent. Explant cultures were established on the denuded human amniotic membrane with corneal lineage differentiation medium. The day 14 cultures were characterized for epithelial and corneal lineage-specific markers using reverse transcription (RT)-PCR for cytokeratin 3, 4, 12, 13, 15, connexin 43, vimentin, p63a, and ABCG2 markers. mRNA expression was estimated in day 14 cultures with real-time quantitative real time (qRT)-PCR for pluripotency markers (OCT4, SOX2, NANOG), putative corneal stem cell markers (ABCG2 and p63a), proliferation markers (cyclin d1, K-i-67, PCNA, and CDC20), apoptotic markers (BCL2, BAX, caspase 3, and caspase 9), Notch signaling pathway markers (Notch1, Jagged1, Hes1, Hes3, Hes5, and Hey1), and autophagic markers (LC3A, LC3B, ATG7, RAB7, LAMP1, and LAMP2). Fluorescence-activated cell sorter profiling was performed for pluripotent markers and putative corneal stem cell markers ABCG2 and p63a. Results: The protein and mRNA expression levels of the pluripotent markers were lower, whereas those of the putative stem/progenitor markers ABCG2,.Np63a, and Notch signaling molecules (Notch1 and Jagged1) were elevated in limbal cultures. The gene expression levels of the autophagy markers (LC3A, LC3B, and LAMP1) were significantly increased in the limbal cultures compared to the oral and conjunctival cultures. Conclusions: In conclusion, the limbal epithelial cultures showed higher expression of proliferative, limbal stem cell marker, Notch signaling, and autophagy markers suggesting a role in stem cell maintenance and differentiation. This implicates the probable factors that might drive a successful transplantation. Our findings provide the initial steps toward understanding transplantation medicine in an ex vivo model.
引用
收藏
页码:828 / 845
页数:18
相关论文
共 68 条
[1]   Cultivated Human Conjunctival Epithelial Transplantation for Total Limbal Stem Cell Deficiency [J].
Ang, Leonard P. K. ;
Tanioka, Hidetoshi ;
Kawasaki, Satoshi ;
Ang, Leslie P. S. ;
Yamasaki, Kenta ;
Do, Tien Phuc ;
Thein, Zaw M. ;
Koizumi, Noriko ;
Nakamura, Takahiro ;
Yokoi, Norihiko ;
Komuro, Aoi ;
Inatomi, Tsutomu ;
Nakatsukasa, Mina ;
Kinoshita, Shigeru .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2010, 51 (02) :758-764
[2]  
Balasubramanian S, 2008, INDIAN J MED RES, V128, P616
[3]   Maintenance of retinal stem cells by Abcg2 is regulated by notch signaling [J].
Bhattacharya, Sumitra ;
Das, Ani ;
Mallya, Kavita ;
Ahmad, Iqbal .
JOURNAL OF CELL SCIENCE, 2007, 120 (15) :2652-2662
[4]   Cultured Autologous Oral Mucosal Epithelial Cell Sheet (CAOMECS) Transplantation for the Treatment of Corneal Limbal Epithelial Stem Cell Deficiency [J].
Burillon, Carole ;
Huot, Laure ;
Justin, Virginie ;
Nataf, Serge ;
Chapuis, Francois ;
Decullier, Evelyne ;
Damour, Odile .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2012, 53 (03) :1325-1331
[5]   TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species [J].
Chen, Chong ;
Liu, Yu ;
Liu, Runhua ;
Ikenoue, Tsuneo ;
Guan, Kun-Liang ;
Liu, Yang ;
Zheng, Pan .
JOURNAL OF EXPERIMENTAL MEDICINE, 2008, 205 (10) :2397-2408
[6]   Expression of Angiogenesis-Related Factors in Human Corneas after Cultivated Oral Mucosal Epithelial Transplantation [J].
Chen, Hung-Chi Jesse ;
Yeh, Lung-Kun ;
Tsai, Yueh-Ju ;
Lai, Chyong-Huey ;
Chen, Chi-Chun ;
Lai, Jui-Yang ;
Sun, Chi-Chin ;
Chang, Grace ;
Hwang, Tsann-Long ;
Chen, Jan-Kan ;
Ma, David Hui-Kang .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2012, 53 (09) :5615-5623
[7]   Notch induces cyclin-D1-dependent proliferation during a specific temporal window of neural differentiation in ES cells [J].
Das, Debashish ;
Lanner, Fredrik ;
Main, Heather ;
Andersson, Emma R. ;
Bergmann, Olaf ;
Sahlgren, Cecilia ;
Heldring, Nina ;
Hermanson, Ola ;
Hansson, Emil M. ;
Lendahl, Urban .
DEVELOPMENTAL BIOLOGY, 2010, 348 (02) :153-166
[8]  
Dhamodaran K, 2013, RECENT ADV OPHTHALOM
[9]  
Dhamodaran K., 2013, RECENT ADV OPHTHALMO, P103
[10]   Ocular stem cells: a status update! [J].
Dhamodaran, Kamesh ;
Subramani, Murali ;
Ponnalagu, Murugeswari ;
Shetty, Reshma ;
Das, Debashish .
STEM CELL RESEARCH & THERAPY, 2014, 5