Natural hybridization and genetic and morphological variation between two epiphytic bromeliads

被引:31
作者
Neri, Jordana [1 ]
Wendt, Tania [2 ]
Palma-Silva, Clarisse [3 ]
机构
[1] Univ Fed Rio de Janeiro, Museu Nacl, Dept Bot, Programa Pos Grad Bot, BR-20940040 Rio De Janeiro, RJ, Brazil
[2] Univ Fed Rio de Janeiro, Inst Biol, Dept Bot, BR-21941590 Rio De Janeiro, RJ, Brazil
[3] Univ Estadual Paulista, Dept Ecol, Programa Pos Grad Ecol, Ave 24A 1515, BR-13506900 Rio Claro, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Atlantic Forest; Bromeliaceae; floral traits; hybrids; reproductive barriers; species integrity; sympatric; DOBZHANSKY-MULLER INCOMPATIBILITIES; ARENARIA-UNIFLORA CARYOPHYLLACEAE; MATING SYSTEM VARIATION; REPRODUCTIVE ISOLATION; NEOTROPICAL INSELBERGS; PLANT SPECIATION; PITCAIRNIA BROMELIACEAE; MICROSATELLITE MARKERS; POSTZYGOTIC ISOLATION; POPULATION-STRUCTURE;
D O I
10.1093/aobpla/plx061
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Reproductive isolation is of fundamental importance for maintaining species boundaries in sympatry. Here, we examine the genetic and morphological differences between two closely related bromeliad species: Vriesea simplex and Vriesea scalaris. Furthermore, we examined the occurrence of natural hybridization and discuss the action of reproductive isolation barriers. Nuclear genomic admixture suggests hybridization in sympatric populations, although interspecific gene flow is low among species in all sympatric zones (N(e)m < 0.5). Thus, morphological and genetic divergence (10.99 %) between species can be maintained despite ongoing natural hybridization. Cross-evaluation of our genetic and morphological data suggests that species integrity is maintained by the simultaneous action of multiple barriers, such as divergent reproductive systems among species, differences in floral traits and low hybrid seed viability.
引用
收藏
页数:16
相关论文
共 87 条
[1]   Hybridization and speciation [J].
Abbott, R. ;
Albach, D. ;
Ansell, S. ;
Arntzen, J. W. ;
Baird, S. J. E. ;
Bierne, N. ;
Boughman, Janette W. ;
Brelsford, A. ;
Buerkle, C. A. ;
Buggs, R. ;
Butlin, R. K. ;
Dieckmann, U. ;
Eroukhmanoff, F. ;
Grill, A. ;
Cahan, S. H. ;
Hermansen, J. S. ;
Hewitt, G. ;
Hudson, A. G. ;
Jiggins, C. ;
Jones, J. ;
Keller, B. ;
Marczewski, T. ;
Mallet, J. ;
Martinez-Rodriguez, P. ;
Moest, M. ;
Mullen, S. ;
Nichols, R. ;
Nolte, A. W. ;
Parisod, C. ;
Pfennig, K. ;
Rice, A. M. ;
Ritchie, M. G. ;
Seifert, B. ;
Smadja, C. M. ;
Stelkens, R. ;
Szymura, J. M. ;
Vainola, R. ;
Wolf, J. B. W. ;
Zinner, D. .
JOURNAL OF EVOLUTIONARY BIOLOGY, 2013, 26 (02) :229-246
[2]  
Anderson EC, 2002, GENETICS, V160, P1217
[3]  
Arnold ML., 2014, ANNAUL REV ECOLOGY, V23, P237
[4]   The origins of reproductive isolation in plants [J].
Baack, Eric ;
Melo, Maria Clara ;
Rieseberg, Loren H. ;
Ortiz-Barrientos, Daniel .
NEW PHYTOLOGIST, 2015, 207 (04) :968-984
[5]   Taxonomic revision of Bromeliaceae subfam. Tillandsioideae based on a multi-locus DNA sequence phylogeny and morphology [J].
Barfuss, Michael H. J. ;
Till, Walter ;
Leme, Elton M. C. ;
Pinzon, Juan P. ;
Manzanares, Jose M. ;
Halbritter, Heidemarie ;
Samuel, Rosabelle ;
Brown, Gregory K. .
PHYTOTAXA, 2016, 279 (01) :1-+
[6]   Ecology and evolution of plant mating [J].
Barrett, SCH ;
Harder, LD .
TRENDS IN ECOLOGY & EVOLUTION, 1996, 11 (02) :73-79
[7]   The case for character displacement in plants [J].
Beans, Carolyn M. .
ECOLOGY AND EVOLUTION, 2014, 4 (06) :852-865
[8]  
Beerli P, 1999, GENETICS, V152, P763
[9]  
Benzing D., 2000, Bromeliaceae: profile of an adaptive radiation
[10]   Microsatellites in the bromeliads Tillandsia fasciculata and Guzmania monostachya [J].
Boneh, L ;
Kuperus, P ;
Van Tienderen, PH .
MOLECULAR ECOLOGY NOTES, 2003, 3 (02) :302-303