Poly(ethylene oxide)/Poly(vinylidene fluoride)/Li6.4La3Zr1.4ATa0.6O12 composite electrolyte with a stable interface for high performance solid state lithium metal batteries

被引:47
作者
Bai, Changjiang [1 ]
Wu, Zhenguo [1 ]
Xiang, Wei [2 ]
Wang, Gongke [3 ]
Liu, Yuxia [4 ]
Zhong, Yanjun [1 ]
Chen, Butian [5 ]
Liu, Rundie [1 ]
He, Fengrong [5 ]
Guo, Xiaodong [1 ]
机构
[1] Sichuan Univ, Coll Chem Engn, Chengdu 610065, Peoples R China
[2] Chengdu Univ Technol, Coll Mat & Chem & Chem Engn, Chengdu 610059, Peoples R China
[3] Henan Normal Univ, Sch Mat Sci & Engn, Xinxiang 453007, Henan, Peoples R China
[4] Qufu Normal Univ, Key Lab Life Organ Anal, Key Lab Pharmaceut Intermediates & Anal Nat Med, Sch Chem & Chem Engn, Qufu 273165, Shandong, Peoples R China
[5] Ruyuan Hec Technol Corp, Postdoctoral Mobile Res Ctr, Ruyuan 512000, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Composite electrolyte; Polyethylene oxide; Ionic conductivity; Interfacial impedance; Stable layer; Solid lithium metal battery; NI-RICH CATHODE; HIGH IONIC-CONDUCTIVITY; POLYMER ELECTROLYTE; HIGH-VOLTAGE; STABILITY; MEMBRANE; GRADIENT; SURFACE;
D O I
10.1016/j.jpowsour.2020.228461
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymer-ceramic composite electrolyte is an effective solution for developing high-performance and flexible all-solid-state lithium metal battery. However, the key bottleneck of composite electrolyte including low ionic conductivity and high interfacial impedance have impeded their industrialization in solid electrolyte lithium batteries. Here we present a polymer-ceramic hybrid electrolyte (polyethylene oxide (PEO)/polyvinylidene fluoride (PVDF)/Li(6.4)La(3)Zr(1.4)ATa(0.6)O(12) (LLZTO)) is designed and modified by trace amount of liquid electrolyte. The addition of PVDF can not only reduce the crystallinity of PEO polymer, but also intensify the affinity between liquid electrolyte and the composite electrolyte. Furthermore, the interfacial modification can synchronously achieve the intimate connection, low interfacial impedance between the electrodes and solid electrolytes by forming the viscoelastic and stable layer. Due to the artful design, the solid-state battery deliver excellent performance. The Li symmetric cells show excellent interface stability without short circuits for 1000h. The assembled LiFePO4/Li cells exhibit a discharge capacity of 160.1 mA h g(-1) after 200 cycles at 0.4C and 143.3 mA h g(-1) at 5C. The composite solid electrolyte provides an effective and feasible methods to solve the interfacial issues and develop high performance solid lithium metal batteries.
引用
收藏
页数:10
相关论文
共 48 条
  • [21] High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide)
    Lin, Dingchang
    Liu, Wei
    Liu, Yayuan
    Lee, Hye Ryoung
    Hsu, Po-Chun
    Liu, Kai
    Cui, Yi
    [J]. NANO LETTERS, 2016, 16 (01) : 459 - 465
  • [22] Enhanced ionic conductivity and interface stability of hybrid solid-state polymer electrolyte for rechargeable lithium metal batteries
    Liu, Qiao
    Liu, Yangyang
    Jiao, Xingxing
    Song, Zhongxiao
    Sadd, Matthew
    Xu, Xiaoxiong
    Matic, Aleksandar
    Xiong, Shizhao
    Song, Jiangxuan
    [J]. ENERGY STORAGE MATERIALS, 2019, 23 : 105 - 111
  • [23] Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires
    Liu, Wei
    Lee, Seok Woo
    Lin, Dingchang
    Shi, Feifei
    Wang, Shuang
    Sendek, Austin D.
    Cui, Yi
    [J]. NATURE ENERGY, 2017, 2 (05):
  • [24] Ionic Conductivity Enhancement of Polymer Electrolytes with Ceramic Nanowire Fillers
    Liu, Wei
    Liu, Nian
    Sun, Jie
    Hsu, Po-Chun
    Li, Yuzhang
    Lee, Hyun-Wook
    Cui, Yi
    [J]. NANO LETTERS, 2015, 15 (04) : 2740 - 2745
  • [25] Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode
    Liu, Yayuan
    Lin, Dingchang
    Liang, Zheng
    Zhao, Jie
    Yan, Kai
    Cui, Yi
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [26] An in situ element permeation constructed high endurance Li-LLZO interface at high current densities
    Lu, Yang
    Huang, Xiao
    Ruan, Yadong
    Wang, Qingsong
    Kun, Rui
    Yang, Jianhua
    Wen, Zhaoyin
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (39) : 18853 - 18858
  • [27] High Polarity Poly(vinylidene difluoride) Thin Coating for Dendrite-Free and High-Performance Lithium Metal Anodes
    Luo, Jing
    Fang, Chia-Chen
    Wu, Nae-Lih
    [J]. ADVANCED ENERGY MATERIALS, 2018, 8 (02)
  • [28] Viscoelastic and Nonflammable Interface Design-Enabled Dendrite-Free and Safe Solid Lithium Metal Batteries
    Ma, Qiang
    Zeng, Xian-Xiang
    Yue, Junpei
    Yin, Ya-Xia
    Zuo, Tong-Tong
    Liang, Jia-Yan
    Deng, Qi
    Wu, Xiong-Wei
    Guo, Yu-Guo
    [J]. ADVANCED ENERGY MATERIALS, 2019, 9 (13)
  • [29] Dual Elements Coupling Effect Induced Modification from the Surface into the Bulk Lattice for Ni-Rich Cathodes with Suppressed Capacity and Voltage Decay
    Ming, Yong
    Xiang, Wei
    Qiu, Lang
    Hua, Wei-Bo
    Li, Rong
    Wu, Zhen-Guo
    Xu, Chun-Liu
    Li, Yong-Chun
    Wang, Dong
    Chen, Yan-Xiao
    Zhong, Ben-He
    He, Feng-Rong
    Guo, Xiao-Dong
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (07) : 8146 - 8156
  • [30] Gd-doped Li7La3Zr2O12 garnet-type solid electrolytes for all-solid-state Li-Ion batteries
    Song, Shidong
    Chen, Butian
    Ruan, Yanli
    Sun, Jian
    Yu, Limei
    Wang, Yan
    Thokchom, Joykumar
    [J]. ELECTROCHIMICA ACTA, 2018, 270 : 501 - 508